MAT 331 Fall 2023 Project The box-counting dimension of the Weierstrass function

The Weierstrass function on $[0,1]$ is defined by

$$
f_{b, \alpha}(x)=\sum_{n=0}^{\infty} b^{-\alpha n} \sin \left(2 \pi b^{n} x\right) .
$$

where b is an integer greater or equal to 2 and $0<\alpha<1$. It is a famous example of a continuous function that is nowhere differentiable. You may have encountered it in MAT319/320. The graph of this function is also an example of a "fractal" set. This project concerns numerically estimating the box-counting dimension of the graph. The box-counting dimension is also commonly called the Minkowski dimension.

The basic idea involves covering a set with an $\frac{1}{n} \times \frac{1}{n}$ grid. Then, counting how many boxes from that grid a set hits. As n grows and the grid squares get smaller, more squares will hit the set. The number of squares often grows like a negative power of n, say $N_{n} \approx n^{d}$, and d is called the box-counting dimension. For example, the box-counting dimension of a line is 1 and the box-counting dimension of a square is 2 . To compute the dimension of the graph of the Weierstrass function, we take the $\operatorname{logarithm}$ of this equation and solve for α to get $\alpha=\log \left(N_{n}\right) / \log (n)$ (the base does not matter as long as you use the same base for both logarithms).
(1) Take $b=2$ and $\alpha=1 / 4,1 / 2,3 / 4$. Plot the graph of $f_{2, \alpha}$ on $[0,1]$ for each of these choices.
(2) Let $N_{n}(f)$ be the number of boxes from the standard $\frac{1}{n} \times \frac{1}{n}$ grid of squares in the plane that are hit by the graph of f. Show that

$$
N_{n}(f) \approx \sum_{k=1}^{n} n\left(\max \left(f, I_{k}\right)-\min \left(f, I_{k}\right)\right)
$$

where $I_{k}=\left[\frac{k-1}{n}, \frac{k}{n}\right]$. Write a Matlab function that takes f and n as inputs and returns the value of the sum on the right.
(3) The box-counting dimension of the graph of f is defined as

$$
\lim _{n \rightarrow \infty} \frac{\log N_{n}(f)}{\log n}
$$

Estimate this limit for the Weierstrass function $f_{2, \alpha}$ for several α values, say $\alpha=, .2, .3, \ldots, .9$. Plot your estimates. Can you formulate a conjecture for what the box-counting dimension is as a function of α ? Since $f_{b, \alpha}$ is given by an infinite series, you will have to replace the infinite sum by a finite sum in your experiments. Taking $k=50$ or 100 should give good results for $n \leq 1,000,000$.
(4) Repeat your experiments for other values of b, say $b=3$, 4 . For each α, does the box-counting dimension seem the same as before, or does it change when b changes?
Remark: The dimension of the graph of the Weierstrass function is discussed in Chapter 5 of "Fractals in Probability and Analysis"; a PDF of this book is available at:
https://www.math.stonybrook.edu/~waterman/Fall23_MAT331/OtherMaterial/fractalbook_ final.pdf

