James Waterman Homework 0, Summing digits of ${ }_{\pi}$, MAT 331, Fall 2023

Table of Contents

Part 1: What is the sum of the first 10,000 digits of pi? 1
Part 2: If the digits of π are uniformly random in $\{0, \ldots, 9\}$, what would we expect the sum to be? How far apart are the actual and expected sums? 2
Part 3: For $1<=\mathrm{k}<=\mathrm{N}$, plot the difference between the expected and the actual sum of the first k digits of pi. Do you see any pattern? 2Part 4: Draw a histogram of how many times each digit is used. Which digit is used the most and which isused the least? How many times are they used?3

Part 1: What is the sum of the first 10,000 digits of pi ?

We use vpa to compute $\mathrm{N}=10000$ digits of pi and convert this to a character string y with char. We then let x hold the numerical value of the kth digit, being careful to omit the second character, which is the decimal point. Then t is defined as the sum of all the digits.

```
N=10000;
y=char(vpa(pi,N));
x(1)=str2num(y(1));
y=char(vpa(pi,N));
for k=2:N
x(k)=str2num(y(k+1));
end
t=sum(x)
```

$t=$
44890

This creates a single character string y that is 10,001 characters long (there is an extra character for the decimal point). We then convert this to a string of integers x , remembering to skip the decimal place. The answer to the first part is $\mathrm{t}=44890$.

Part 2: If the digits of ${ }_{\pi}$ are uniformly random in $\{0, \ldots, 9\}$, what would we expect the sum to be? How far apart are the actual and expected sums?

If the digits were uniformly random in $\backslash\{0,1, \backslash$ dots, $9 \backslash\}$ then the average size of a digit would be $\mathrm{a}=(0+1+\backslash$ dots $+9) / 10=4.5$, and the sum of 10,000 such digits would be 45,000 . The difference between this and the actual sum is $45000-44890=110$.

Part 3: For 1 <= k <= \mathbf{N}, plot the difference between the expected and the actual sum of the first k digits of pi. Do you see any pattern?

To compute the sum of the first k digits of pi we can either use a loop as follows,

```
c(1)=x(1);
for k=2:N
    c(k)=c(k-1) +x (k);
end
```

or a built-in MATLAB command that does the same thing:
d=cumsum (x);
We can check that these both give the same list of numbers, by subtracting them and taking the maximum of the absolute value:

```
error = max(abs(c-d))
```

```
error =
```

0

To plot the difference between c and 4.5 k we use:

```
figure; % creates an empty figure window
hold on; % tells MATLAB keep all the following features
grid on; % creates a grid
title('The difference between actual and expected sums')
f=c-4.5*[1:N]; % defines difference between actual sum and expected sum
plot(f); % plots f, default color is blue
xlabel('k'); % puts label on horizontal axis
ylabel('f(k)'); % puts label on vertical axis
% No pattern is apparent. Indeed, the behavior looks pretty random.
```


Part 4: Draw a histogram of how many times each digit is used. Which digit is used the most and which is used the least? How many times are they used?

```
From part (1) the vector x contains the first 10,000 digits of $\pi$.
The command hist(x,n) will plot a histogram of x, i.e., divide the
range of x into n equal intervals and plot a chart showing how many
values of x lie in each bin. Since x only takes the
10 integer values 0,..,9, if we set n=10, then each digit will be
placed in its own bin.
    figure;
    hold on;
    grid on;
    title('Histogram of the first 10,000 digits of \pi');
    hist(x,10);
```


The command $\mathrm{h}=\operatorname{hist}(\mathrm{x}, \mathrm{n})$ does not draw the histogram, but computes the number of values in each bin and puts these values in the n -vector h . The last command creates a 2 -column vector such that the first column lists the digits $0-9$ and the second lists h , the number of times that digit occurs.

```
    h=hist(x,10);
    [0:9;h]'
ans =
\begin{tabular}{rr}
0 & 968 \\
1 & 1026 \\
2 & 1021 \\
3 & 975 \\
4 & 1012 \\
5 & 1046 \\
6 & 1021 \\
7 & 969 \\
8 & 948 \\
9 & 1014
\end{tabular}
```

From the values of h, we see that the most used digit is 5 (it occurs 1046 times) and the least used digit is 8 (used 948 times).

