

Introduction	(Quasi)-self-similarity	n = 2	n = 3	$n \ge 4$
●00	000	000	000000000000	
Cantor	Julia sets of holomo	rphic map	S	

Question: Which Cantor sets are Julia sets of holomorphic maps?

표 ▶ - 표

Question: Which Cantor sets are Julia sets of holomorphic maps?

• If c is in the exterior of the Mandelbrot set, then $\mathcal{J}(z^2+c)$ is a Cantor set. For example,

Question: Which Cantor sets are Julia sets of holomorphic maps?

• If c is in the exterior of the Mandelbrot set, then $\mathcal{J}(z^2+c)$ is a Cantor set. For example,

• The standard Cantor \mathcal{C} set is not the Julia set of a holomorphic map!

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	$n \ge 4$
Uniformly	quasiregular ma	ps		

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 0000000000000	$n \ge 4$
Uniformly	quasiregular	maps		

• Well-known examples (e.g. standard Cantor set) are absent.

⊒ **)** ∃

Introduction ○●○	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000000000000000000000000000	$n \ge 4$
Uniformly qu	lasiregular maps			

- Well-known examples (e.g. standard Cantor set) are absent.
- **Gehring-Reshetnyak rigidity Theorem:** There are no non-trivial holomorphic maps in dimensions n ≥ 3.

Introduction ○●○	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	$n \ge 4$
Uniformly qu	asiregular maps			

- Well-known examples (e.g. standard Cantor set) are absent.
- **Gehring-Reshetnyak rigidity Theorem:** There are no non-trivial holomorphic maps in dimensions n ≥ 3.

▶ An orientation-preserving map $f : \mathbb{S}^n \to \mathbb{S}^n$ is *K*-quasiregular if $f \in \mathcal{W}^{1,n}_{\mathsf{loc}}(\mathbb{S}^n)$ and

$$\mathcal{K}^{-1}\max_{|h|=1}|f'(x)h| \leq (J_f(x))^{1/n} \leq \mathcal{K}\min_{|h|=1}|f'(x)h|$$
 a.e. $x \in \mathbb{S}^n$.

Introduction ○●○	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	$n \ge 4$
Uniformly qu	asiregular maps			

- Well-known examples (e.g. standard Cantor set) are absent.
- **Gehring-Reshetnyak rigidity Theorem:** There are no non-trivial holomorphic maps in dimensions n ≥ 3.

▶ An orientation-preserving map $f : \mathbb{S}^n \to \mathbb{S}^n$ is *K*-quasiregular if $f \in \mathcal{W}^{1,n}_{\mathsf{loc}}(\mathbb{S}^n)$ and

$$\mathcal{K}^{-1}\max_{|h|=1}|f'(x)h| \leq (J_f(x))^{1/n} \leq \mathcal{K}\min_{|h|=1}|f'(x)h|$$
 a.e. $x \in \mathbb{S}^n$.

▶ An orientation-preserving map $f : \mathbb{S}^n \to \mathbb{S}^n$ is uniformly quasiregular (UQR) if there exists $K \ge 1$ such that f^m is K-quasiregular for all $m \in \mathbb{N}$.

★ Ξ ► ★ Ξ ► Ξ

Introduction ○○●	(Quasi)-self-similarity	n = 2 000	n = 3 0000000000000	$n \ge 4$
Hyperbolic	UQR maps			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … 釣へで

Introduction ○○●	(Quasi)-self-similarity	n = 2 000	n = 3 00000000000000	$n \ge 4$
Hyperbolic	: UQR maps			

▶ UQR maps are discrete but may not be injective. The branch set

 $\mathcal{B}(f) = \{x \in \mathbb{S}^n : f \text{ is not locally a homeomorphism at } x\}.$

Example: If $f(z) = z^2$, then $\mathcal{B}(f) = \{0, \infty\}$.

▲ 王 ▶ 王 • • ○ ● ●

Introduction ○○●	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000000	$n \ge 4$
Hyperbolic U	JQR maps			

▶ UQR maps are discrete but may not be injective. The branch set

 $\mathcal{B}(f) = \{x \in \mathbb{S}^n : f \text{ is not locally a homeomorphism at } x\}.$

Example: If $f(z) = z^2$, then $\mathcal{B}(f) = \{0, \infty\}$. A map $f : \mathbb{S}^n \to \mathbb{S}^n$, $n \ge 2$ is hyperbolic UQR if it is UQR and $\mathcal{J}(f) \cap \overline{\bigcup_{m \ge 0} f^m(\mathcal{B}(f))} = \emptyset$.

Example: The map $f(z) = z^2$ is hyperbolic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Introduction ○○●	(Quasi)-self-similarity	n = 2 000	n = 3 0000000000000	$n \ge 4$
Hyperbolic U	IQR maps			

▶ UQR maps are discrete but may not be injective. The branch set

 $\mathcal{B}(f) = \{x \in \mathbb{S}^n : f \text{ is not locally a homeomorphism at } x\}.$

Example: If $f(z) = z^2$, then $\mathcal{B}(f) = \{0, \infty\}$. A map $f : \mathbb{S}^n \to \mathbb{S}^n$, $n \ge 2$ is hyperbolic UQR if it is UQR and $\mathcal{J}(f) \cap \overline{\bigcup_{m \ge 0} f^m(\mathcal{B}(f))} = \emptyset$.

Example: The map $f(z) = z^2$ is hyperbolic.

Question

Which Cantor sets are Julia sets for (hyperbolic) UQR maps?

イロト 不得 トイヨト イヨト 二日

Introduction	(Quasi)-self-similarity ●○○	n = 2 000	n = 3 00000000000000	$n \ge 4$
(Quasi)-se	elf-similarity			

Introduction	(Quasi)-self-similarity ●○○	n = 2 000	n = 3 000000000000	$n \ge 4$
(Quasi)-s	elf-similarity			

Definition

A Cantor set $X \subset \mathbb{S}^n$ is self-similar if $X = X_1 \cup \cdots \cup X_k$ where X_i are mutually disjoint rescaled copies of X.

프 🖌 🛛 프

Introduction	(Quasi)-self-similarity ●೦೦	n = 2 000	n = 3 000000000000	$n \ge 4$
(Quasi)-s	elf-similarity			

Definition

A Cantor set $X \subset \mathbb{S}^n$ is self-similar if $X = X_1 \cup \cdots \cup X_k$ where X_i are mutually disjoint rescaled copies of X.

Definition

A Cantor set $X \subset \mathbb{S}^n$ is quasi-self-similar if for any $x \in X$ and $r \in (0, \operatorname{diam} X)$ there exists $x \in E_{x,r} \subset X$ such that

 $dist(E_{x,r}, X \setminus E_{x,r}) \simeq r \simeq diam E_{x,r}.$

Introduction	(Quasi)-self-similarity ●೦೦	n = 2 000	n = 3 000000000000	$n \geq 4$
(Quasi)-s	elf-similarity			

Definition

A Cantor set $X \subset \mathbb{S}^n$ is self-similar if $X = X_1 \cup \cdots \cup X_k$ where X_i are mutually disjoint rescaled copies of X.

Definition

A Cantor set $X \subset \mathbb{S}^n$ is quasi-self-similar if for any $x \in X$ and $r \in (0, \operatorname{diam} X)$ there exists $x \in E_{x,r} \subset X$ such that

 $\operatorname{dist}(E_{x,r},X\setminus E_{x,r})\simeq r\simeq\operatorname{diam} E_{x,r}.$

• **QS** uniformization of Cantor sets (David-Semmes 1998) A Cantor set X is quasi-self-similar if and only if $X \approx^{QS} C$.

Introduction	(Quasi)-self-similarity ○●○	n = 2 000	n = 3 0000000000000	$n \ge 4$
Examples				

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	○●○	000	000000000000	00
Examples				

< □ > < 🗗

< ∃⇒

2

Introduction	(Quasi)-self-similarity ○●○	n = 2 000	n = 3 000000000000000000000000000000000000	$n \geq 4$
Examples				

- The Cantor set $C[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots]$ is self-similar.
- More generally, if (a_n) is a periodic sequence in (0, 1), then $C[a_1, a_2, a_3, ...]$ is self-similar.

글 > 글

Introduction	(Quasi)-self-similarity ○●○	n = 2 000	n = 3 000000000000	$n \ge 4$
Examples				

• More generally, if (a_n) is a periodic sequence in (0, 1), then $C[a_1, a_2, a_3, ...]$ is self-similar.

• If (a_n) is a sequence in (0, 1) that does not approach 0 or 1, then $C[a_1, a_2, a_3, ...]$ is quasi-self-similar.

Introduction	(Quasi)-self-similarity ○●○	n = 2 000	n = 3 000000000000	$n \ge 4$
Examples				

• More generally, if (a_n) is a periodic sequence in (0, 1), then $C[a_1, a_2, a_3, ...]$ is self-similar.

• If (a_n) is a sequence in (0, 1) that does not approach 0 or 1, then $C[a_1, a_2, a_3, ...]$ is quasi-self-similar.

• The Cantor set $C[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \dots] \sqcup C[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots]$ is quasi-self-similar but not self-similar.

Introduction	(Quasi)-self-similarity ○●○	n = 2 000	n = 3 0000000000000	$n \ge 4$
Examples				

• More generally, if (a_n) is a periodic sequence in (0, 1), then $C[a_1, a_2, a_3, ...]$ is self-similar.

• If (a_n) is a sequence in (0, 1) that does not approach 0 or 1, then $C[a_1, a_2, a_3, ...]$ is quasi-self-similar.

• The Cantor set $C[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \dots] \sqcup C[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots]$ is quasi-self-similar but not self-similar.

• The Cantor set $C[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}...]$ is not quasi-self-similar.

Introduction	(Quasi)-self-similarity ○○●	n = 2 000	n = 3 0000000000000	$n \geq 4$
Geometric	obstructions for	r Cantor J	ulia sets	

Vyron Vellis (UTK) Cantor Julia sets

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … 釣へで

Introduction	(Quasi)-self-similarity ○○●	n = 2 000	n = 3 0000000000000	$n \geq 4$
Geometric	obstructions fo	r Cantor Julia	sets	

• Fletcher-Nicks (2011) The Julia set of a UQR map is uniformly perfect.

Example: $C[\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...]$ can not be the Julia set of a UQR map.

< 臣 →

э

Introduction	(Quasi)-self-similarity	n = 2	n = 3	$n \geq 4$
000	○○●	000	000000000000	
Geometric	obstructions for	Cantor Julia	sets	

• Fletcher-Nicks (2011) The Julia set of a UQR map is uniformly perfect.

Example: $C[\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots]$ can not be the Julia set of a UQR map.

• **Fletcher-V (2021)** If the Julia set of a hyperbolic UQR map is a Cantor set, then it is quasi-self-similar.

Example: $C[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...]$ can not be the Julia set of a hyperbolic UQR map.

Introduction	(Quasi)-self-similarity	n = 2	n = 3	$n \ge 4$
	000	●00	000000000000	00
Examples of	planar (quasi-)se	lf-similar Ju	ulia sets	

Introduction	(Quasi)-self-similarity	n = 2 ●00	n = 3 00000000000	n ≧ 4 00
Examples of	planar (quasi-)sel	f-similar Ju	ulia sets	

• Iwaniec-Martin (1996) The standard Cantor set C is the Julia set of a hyperbolic UQR map of \mathbb{S}^2 .

Introduction	(Quasi)-self-similarity	n = 2 ○●○	n = 3 0000000000000	$n \ge 4$
Conformal	trap method			

æ

æ

• Iwaniec-Martin (1996) The standard Cantor set C is the Julia set of a hyperbolic UQR map of S^2 .

• Fletcher (2019) If $X \subset \mathbb{S}^2$ is a self-similar Cantor set, then it is a Julia set of a hyperbolic UQR map of \mathbb{S}^2 .

• Iwaniec-Martin (1996) The standard Cantor set C is the Julia set of a hyperbolic UQR map of S^2 .

• Fletcher (2019) If $X \subset \mathbb{S}^2$ is a self-similar Cantor set, then it is a Julia set of a hyperbolic UQR map of \mathbb{S}^2 .

Theorem (Fletcher-V 2021)

A Cantor set $X \subset \mathbb{S}^2$ is the Julia set of a hyperbolic UQR map of \mathbb{S}^2 if and only if it is quasi-self-similar.

• Iwaniec-Martin (1996) The standard Cantor set C is the Julia set of a hyperbolic UQR map of S^2 .

• Fletcher (2019) If $X \subset \mathbb{S}^2$ is a self-similar Cantor set, then it is a Julia set of a hyperbolic UQR map of \mathbb{S}^2 .

Theorem (Fletcher-V 2021)

A Cantor set $X \subset \mathbb{S}^2$ is the Julia set of a hyperbolic UQR map of \mathbb{S}^2 if and only if it is quasi-self-similar.

• QC uniformization of Cantor sets in \mathbb{S}^2 (MacManus 1999) If $X \subset \mathbb{S}^2$ is a quasi-self-similar Cantor set, then there exists a quasiconformal $f : \mathbb{S}^2 \to \mathbb{S}^2$ such that f(X) = C.

Introduction	(Quasi)-self-similarity 000	n = 2 000	n = 3 ●000000000000	$n \ge 4$
T				

Tame Cantor sets

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 ●000000000000	$n \ge 4$
Tame Car	ntor sets			

▶ A Cantor set $X \subset \mathbb{S}^n$ is tame if there exists a homeomorphism $f : \mathbb{S}^n \to \mathbb{S}^n$ such that f(X) = C.

프 🖌 🛛 프

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 ●000000000000	$n \ge 4$
Tame Car	ntor sets			

▶ A Cantor set $X \subset \mathbb{S}^n$ is tame if there exists a homeomorphism $f : \mathbb{S}^n \to \mathbb{S}^n$ such that f(X) = C.

• Moise (1918) Every Cantor set in dimensions 1,2 is tame.

э

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 ●000000000000	$n \ge 4$
Tame Car	ntor sets			

▶ A Cantor set $X \subset \mathbb{S}^n$ is tame if there exists a homeomorphism $f : \mathbb{S}^n \to \mathbb{S}^n$ such that f(X) = C.

• Moise (1918) Every Cantor set in dimensions 1,2 is tame.

• Fletcher-V (2021) If $X \subset \mathbb{S}^3$ is a self-similar and tame* Cantor set, then it is a Julia set of a hyperbolic UQR map of \mathbb{S}^3 .
Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 ○●○○○○○○○○○○○	$n \geq 4$
Wild Canto	or sets			

▶ A Cantor set $X \subset \mathbb{S}^n$ is wild if it is not tame.

< D > < A

= 990

臣▶ ★ 臣▶

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 ○●○○○○○○○○○○○	$n \geq 4$ 00
Wild Cantor	sets			

▶ A Cantor set $X \subset \mathbb{S}^n$ is wild if it is not tame.

▲ 臣 ◆ 臣 ◆ � � �

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 ○●○○○○○○○○○○○	$n \ge 4$
Wild Canto	r sets			

▶ A Cantor set $X \subset \mathbb{S}^n$ is wild if it is not tame.

< 臣 →

э

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 ○●○○○○○○○○○○○	$n \ge 4$
Wild Canto	r sets			

▶ A Cantor set $X \subset S^n$ is wild if it is not tame.

Antoine necklace (Image from Wikipedia)

► The Antoine necklace is a self-similar wild Cantor set.

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 00●000000000	$n \ge 4$
Genus of a (Cantor set in \mathbb{S}^3			

< • • • **•**

< ≣⇒

э.

• Armentrout (1966) There exists a decreasing sequence $(M_n)_{n \in \mathbb{N}}$ of handlebodies such that $X = \bigcap_{n=1}^{\infty} M_n$.

• Armentrout (1966) There exists a decreasing sequence $(M_n)_{n \in \mathbb{N}}$ of handlebodies such that $X = \bigcap_{n=1}^{\infty} M_n$.

▶ Defining sequences are not unique! Denote by $\mathcal{D}(X)$ all such defining sequences for *X*.

• Armentrout (1966) There exists a decreasing sequence $(M_n)_{n \in \mathbb{N}}$ of handlebodies such that $X = \bigcap_{n=1}^{\infty} M_n$.

▶ Defining sequences are not unique! Denote by $\mathcal{D}(X)$ all such defining sequences for *X*.

▶ Željko (2005): The genus of X is

$$g(X) = \inf_{(M_n)\in\mathcal{D}(X)} \sup_{n\in\mathbb{N}} g(M_n).$$

• Armentrout (1966) There exists a decreasing sequence $(M_n)_{n \in \mathbb{N}}$ of handlebodies such that $X = \bigcap_{n=1}^{\infty} M_n$.

▶ Defining sequences are not unique! Denote by $\mathcal{D}(X)$ all such defining sequences for *X*.

▶ Željko (2005): The genus of X is

$$g(X) = \inf_{(M_n)\in\mathcal{D}(X)} \sup_{n\in\mathbb{N}} g(M_n).$$

• Given $x \in X$ we can define $g_x(X)$ the local genus of X at x.

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000●00000000	$n \ge 4$
Examples of	Cantor sets of an	y genus		

Vyron Vellis (UTK) Cantor Julia sets

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000●00000000	n ≥ 4 00
Examples of	Cantor sets of an	y genus		

• A Cantor set $X \subset \mathbb{S}^3$ is tame (e.g. \mathcal{C}) if and only if g(X) = 0.

프 > 프

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000●00000000	n ≥ 4 00
Examples of	Cantor sets of an	y genus		

- A Cantor set $X \subset S^3$ is tame (e.g. C) if and only if g(X) = 0.
- A Cantor set $X \subset \mathbb{S}^3$ is wild (e.g. the Antoine necklace) if and only if $g(X) \geq 1$.

э

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	000	000	000●00000000	00
Examples of	Cantor sets of an	y genus		

- A Cantor set $X \subset S^3$ is tame (e.g. C) if and only if g(X) = 0.
- A Cantor set $X \subset \mathbb{S}^3$ is wild (e.g. the Antoine necklace) if and only if $g(X) \ge 1$.
- If X is the Antoine necklace, then g(X) = 1. Also $g_x(X) = 1$ for all $x \in X$.

э

Introduction	(Quasi)-self-similarity 000	n = 2 000	n = 3 000●00000000	$n \ge 4$
Examples of	Cantor sets of an	iy genus		

- A Cantor set $X \subset S^3$ is tame (e.g. C) if and only if g(X) = 0.
- A Cantor set $X \subset \mathbb{S}^3$ is wild (e.g. the Antoine necklace) if and only if $g(X) \geq 1$.
- If X is the Antoine necklace, then g(X) = 1. Also $g_x(X) = 1$ for all $x \in X$.
- Željko (2005) For each $n \in \mathbb{N}$ there exists a Cantor set $X_n \subset \mathbb{S}^3$ that has $g(X_n) = n$.

3

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	000	000	000●00000000	00
Examples of	Cantor sets of an	y genus		

• A Cantor set $X \subset S^3$ is tame (e.g. C) if and only if g(X) = 0.

• A Cantor set $X \subset \mathbb{S}^3$ is wild (e.g. the Antoine necklace) if and only if $g(X) \geq 1$.

• If X is the Antoine necklace, then g(X) = 1. Also $g_x(X) = 1$ for all $x \in X$.

• Željko (2005) For each $n \in \mathbb{N}$ there exists a Cantor set $X_n \subset \mathbb{S}^3$ that has $g(X_n) = n$.

• However, in Željko's example, there is only one point $x \in X_n$ with $g_x(X_n) = n$.

Introduction	(Quasi)-self-similarity	n = 2	n = 3	$n \ge 4$
Topological	obstructions for C	antor Julia	cotc	

Topological obstructions for Cantor Julia sets

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … 釣へで

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	n ≥ 4 00
Topologic	al obstructions fo	or Cantor J	ulia sets	

Suppose that X is a Cantor set and the Julia set of a hyperbolic UQR map of \mathbb{S}^3 .

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	000	000	0000●0000000	0 00
Topological	obstructions	for Cantor	Julia sets	

Suppose that X is a Cantor set and the Julia set of a hyperbolic UQR map of \mathbb{S}^3 .

• The genus $g(X) < \infty$.

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	n ≥ 4 00
Topological	obstructions	for Cantor	Julia sets	

Suppose that X is a Cantor set and the Julia set of a hyperbolic UQR map of \mathbb{S}^3 .

- The genus $g(X) < \infty$.
- 2 The set

$$\{x \in X : g_x(X) = g(X)\}$$

is dense in X.

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 0000●0000000	$n \ge 4$
Topological	obstructions	for Cantor	Julia sets	

Suppose that X is a Cantor set and the Julia set of a hyperbolic UQR map of \mathbb{S}^3 .

• The genus $g(X) < \infty$.

O The set

$$\{x \in X : g_x(X) = g(X)\}$$

is dense in X.

Example: If \mathcal{A} is the Antoine necklace, then $\mathcal{C} \sqcup \mathcal{A}$ is quasi-self-similar but is not the Julia set of a hyperbolic UQR map.

Introduction	(Quasi)-self-similarity 000	n = 2 000	n = 3 0000●00000000	$n \ge 4$
Topological	obstructions	for Cantor Ju	ulia sets	

Suppose that X is a Cantor set and the Julia set of a hyperbolic UQR map of \mathbb{S}^3 .

• The genus $g(X) < \infty$.

O The set

$$\{x \in X : g_x(X) = g(X)\}$$

is dense in X.

Example: If \mathcal{A} is the Antoine necklace, then $\mathcal{C} \sqcup \mathcal{A}$ is quasi-self-similar but is not the Julia set of a hyperbolic UQR map.

Example: Željko's example is quasi-self-similar but not the Julia set of a hyperbolic UQR map.

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	$n \ge 4$
Examples of	Julia Cantor sets	of any gen	ius	

▲□▶▲@▶▲≧▶▲≧▶ ≧ のQ⊙

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
000	000	000	000000000000	00
Examples of	Julia Cantor sets	of anv gen	us	

• Iwaniec-Martin (1996) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 0$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f) = \mathcal{C}$)

э

• Iwaniec-Martin (1996) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 0$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f) = C$)

• Fletcher-Wu (2015) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 1$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f)$ is the Antoine necklace)

• Iwaniec-Martin (1996) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 0$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f) = C$)

• Fletcher-Wu (2015) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 1$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f)$ is the Antoine necklace)

• Fletcher-Stoertz (2023) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 2$ for all $x \in \mathcal{J}(f)$.

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
000	000	000	000000●000000	00
Examples of	Julia Cantor sets	of any gen	US	

 \circ

• Iwaniec-Martin (1996) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 0$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f) = C$)

• **Fletcher-Wu (2015)** There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 1$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f)$ is the Antoine necklace)

• Fletcher-Stoertz (2023) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 2$ for all $x \in \mathcal{J}(f)$.

• Iwaniec-Martin (1996) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 0$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f) = C$)

• Fletcher-Wu (2015) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 1$ for all $x \in \mathcal{J}(f)$. (Here $\mathcal{J}(f)$ is the Antoine necklace)

• Fletcher-Stoertz (2023) There exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = 2$ for all $x \in \mathcal{J}(f)$.

Theorem (Fletcher-Stoertz-V arXiv)

For each $n \in \mathbb{N}$ there exists a hyperbolic UQR map f of \mathbb{S}^3 such that $g_x(\mathcal{J}(f)) = n$ for all $x \in \mathcal{J}(f)$.

- < ⊒ →

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
000	000	000	00000000●0000	00
Construction	for $n = 3$.	1st step		

Ladder: Let T be the genus 3 thickening of the set bellow.

1	3	1

프 🖌 🛛 프

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000000	$n \ge 4$
Construction	for $n = 3$: 2nd	d step		

000	000	000	000000000000000	00
C +	f	2. 0. 1 -+		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんの

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	000	000	000000000●00	00
Construction	of the UQR map			

$$F: T \setminus \bigcup_i \operatorname{int}(T_i) \to B \setminus \operatorname{int}(T)$$

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 0000000000000000	$n \ge 4$
Construction	of the UQR map			

$$F: T \setminus \bigcup_i \operatorname{int}(T_i) \to B \setminus \operatorname{int}(T)$$

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000●00	$n \ge 4$
Construction	of the UQR map			

$$F: T \setminus \bigcup_i \operatorname{int}(T_i) \to B \setminus \operatorname{int}(T)$$

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 0000000000000000	$n \ge 4$
Construction	of the UQR map			

$$F: T \setminus \bigcup_i \operatorname{int}(T_i) \to B \setminus \operatorname{int}(T)$$

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000000	$n \ge 4$
Construction	of the LIOP man	(cont)		

Construction of the UQR map (cont.)

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 00000000000000	$n \ge 4$
Construction	of the LIOR may	o (cont)		

- 7

Introduction	(Quasi)-self-similarity 000	n = 2 000	n = 3 000000000000	$n \ge 4$
Construction	of the LIOP man	(cont)		

Construction of the UQR map (cont.)

Introduction 000	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000000	$n \ge 4$
Construction	of the LIOR mar	(cont)		

$$\mathbb{R}^{3} = \mathbb{R}^{3} \setminus B \cup B \setminus T \cup T \setminus \bigcup_{i} T_{i} \cup \bigcup_{i} T_{i} \\ \bigcup UQR \text{ map } \qquad \bigcup BE \text{ extension } \bigcup F \qquad \qquad \bigcup \text{similarities}$$
$$\mathbb{R}^{3} = \mathbb{R}^{3} \setminus B' \cup B' \setminus B \cup B \setminus T \cup T$$

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 00000000000●	$n \ge 4$
Julia Canto	r sets of non-co	nstant loc	algenus	

Julia Cantor sets of non-constant local genus

Introduction	(Quasi)-self-similarity 000	n = 2 000	n = 3 00000000000	$n \ge 4$
Julia C	Cantor sets of non-co	nstant loc	al genus	

Theorem (Fletcher-Stoertz-V arXiv)

For each $n \in \mathbb{N}$ there exists a hyperbolic UQR map of \mathbb{S}^3 such that

 $\{g_x(\mathcal{J}(f)): x \in \mathcal{J}(f)\} = \{0, n\}.$

프 > 프

Introduction	(Quasi)-self-similarity 000	n = 2 000	n = 3 000000000000	$n \ge 4$
Julia Cantor	sets of non-c	onstant local	genus	

Theorem (Fletcher-Stoertz-V arXiv)

For each $n \in \mathbb{N}$ there exists a hyperbolic UQR map of \mathbb{S}^3 such that

 $\{g_x(\mathcal{J}(f)): x \in \mathcal{J}(f)\} = \{0, n\}.$

Figure: The case n = 1.

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	000	000	00000000000000	●0
Cantor J	ulia sets in \mathbb{S}^n wit	h <i>n</i> ≥ 4		

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	000	000	000000000000	●0
Cantor	Julia sets in \mathbb{S}^n with	<i>n</i> > 4		

▶ Wild Cantor sets exist in \mathbb{S}^n for all $n \ge 3$. However the following are unknown:

포≯ 문

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 0000000000000	n ≥ 4 ●0
Cantor	Julia sets in \mathbb{S}^n with	<i>n</i> ≥ 4		

- ▶ Wild Cantor sets exist in \mathbb{S}^n for all $n \ge 3$. However the following are unknown:
 - Are there self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 4$?
 - **2** Are there quasi-self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 5$?

э

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	n ≥ 4 ●0
Cantor	Julia sets in \mathbb{S}^n with	<i>n</i> ≥ 4		

- ▶ Wild Cantor sets exist in \mathbb{S}^n for all $n \ge 3$. However the following are unknown:
 - Are there self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 4$?
 - **2** Are there quasi-self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 5$?

• Pankka-Wu (arxiv) There exists a quasi-self-similar Cantor set in \mathbb{S}^4 and it is a Julia set of a (hyperbolic?) UQR map.

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	n ≥ 4 ●0
Cantor	Julia sets in \mathbb{S}^n with J	$n \ge 4$		

▶ Wild Cantor sets exist in \mathbb{S}^n for all $n \ge 3$. However the following are unknown:

- Are there self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 4$?
- **2** Are there quasi-self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 5$?

• Pankka-Wu (arxiv) There exists a quasi-self-similar Cantor set in \mathbb{S}^4 and it is a Julia set of a (hyperbolic?) UQR map.

Theorem (Fletcher-V 2021)

If $X \subset \mathbb{S}^n$ is a quasi-self-similar Cantor set, then it is the Julia set of some hyperbolic UQR map of \mathbb{S}^{n+1} .

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
	000	000	000000000000	●0
Cantor	Julia sets in \mathbb{S}^n with r	$n \ge 4$		

▶ Wild Cantor sets exist in \mathbb{S}^n for all $n \ge 3$. However the following are unknown:

• Are there self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 4$?

2 Are there quasi-self-similar wild Cantor sets in \mathbb{S}^n when $n \ge 5$?

• Pankka-Wu (arxiv) There exists a quasi-self-similar Cantor set in \mathbb{S}^4 and it is a Julia set of a (hyperbolic?) UQR map.

Theorem (Fletcher-V 2021)

If $X \subset \mathbb{S}^n$ is a quasi-self-similar Cantor set, then it is the Julia set of some hyperbolic UQR map of \mathbb{S}^{n+1} .

• QC uniformization of Cantor sets in \mathbb{S}^n (V 2021) If $\overline{X \subset \mathbb{S}^n}$ is a quasi-self-similar Cantor set, then there exists a quasiconformal $f : \mathbb{S}^{n+1} \to \mathbb{S}^{n+1}$ such that f(X) = C.

(비) (비) (분) (분) (분)

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 00000000000000	$n \geq 4$
Open que	stions			

Vyron Vellis (UTK) Cantor Julia sets

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … 釣へで

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 0000000000000	$n \ge 4$
Open que	stions			

Question

Let $X \subset \mathbb{S}^n$ be self-similar. Is there a hyperbolic UQR $f : \mathbb{S}^n \to \mathbb{S}^n$ such that $\mathcal{J}(f) = X$?

E> ★ E> · E

< □ > < 同

Introduction	(Quasi)-self-similarity	n = 2	n = 3	n ≥ 4
000		000	000000000000	○●
Open que	estions			

Question

Let $X \subset \mathbb{S}^n$ be self-similar. Is there a hyperbolic UQR $f : \mathbb{S}^n \to \mathbb{S}^n$ such that $\mathcal{J}(f) = X$?

Question

Let $X \subset \mathbb{S}^n$ be quasi-self-similar. Is there a UQR $f : \mathbb{S}^n \to \mathbb{S}^n$ such that $\mathcal{J}(f) = X$?

ヨト イヨト ヨー のへで

Image: A matrix

Introduction	(Quasi)-self-similarity	n = 2 000	n = 3 000000000000	n ≥ 4 0●
Open que	estions			

Question

Let $X \subset \mathbb{S}^n$ be self-similar. Is there a hyperbolic UQR $f : \mathbb{S}^n \to \mathbb{S}^n$ such that $\mathcal{J}(f) = X$?

Question

Let $X \subset \mathbb{S}^n$ be quasi-self-similar. Is there a UQR $f : \mathbb{S}^n \to \mathbb{S}^n$ such that $\mathcal{J}(f) = X$?

Thank you for your attention.

< 三→

A D b 4 A b

э