Mandelbrot Breadcrumbs

Engaging Undergraduates in Complex Dynamics Research

Daniel Stoertz
they/them/their
St. Olaf College

AMS Spring Central Sectional Meeting, April 21, 2024
(1) Overview of the Project
(2) Good for Undergraduates

- Starting from Analysis Basics
- Developing and Utilizing Coding Skills
- Visual Intuition and Beauty
(3) A Comprehensive Anecdote

Project Details

- Title: Mandelbrot Breadcrumbs

Project Details

- Title: Mandelbrot Breadcrumbs
- Part of St. Olaf College's CURI program

Project Details

- Title: Mandelbrot Breadcrumbs
- Part of St. Olaf College's CURI program
- Goal: Prove the existence of baby Mandelbrot sets in the boundedness locus of either parameter plane for the family

$$
f_{a, c}(z)=z^{n}+\frac{a}{z^{d}}+c,
$$

where $n, d \geq 3$.

Project Details

- Title: Mandelbrot Breadcrumbs
- Part of St. Olaf College's CURI program
- Goal: Prove the existence of baby Mandelbrot sets in the boundedness locus of either parameter plane for the family

$$
f_{a, c}(z)=z^{n}+\frac{a}{z^{d}}+c,
$$

where $n, d \geq 3$.

- Team of two undergraduate researchers, Murali Meyer and Mike Wang.

Background

- The Mandelbrot set \mathcal{M} is the boundedness locus of the critical point $z=0$ for the one-parameter family $f_{c}(z)=z^{2}+c$.

Background

- The Mandelbrot set \mathcal{M} is the boundedness locus of the critical point $z=0$ for the one-parameter family $f_{c}(z)=z^{2}+c$.

Background

- The Mandelbrot set \mathcal{M} is the boundedness locus of the critical point $z=0$ for the one-parameter family $f_{c}(z)=z^{2}+c$.

- This idea can be applied to other parameter families.

Overview of the Project

Background

McMullen Map, $n=5$

Background

- Devaney (2006): proved existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{n}}$, where $n \geq 3$

Background

- Devaney (2006): proved existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{n}}$, where $n \geq 3$
- Jang, So, Marotta (2017): proved* existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{d}}$, where $\frac{1}{n}+\frac{1}{d}<1$

Background

- Devaney (2006): proved existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{n}}$, where $n \geq 3$
- Jang, So, Marotta (2017): proved* existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{d}}$, where $\frac{1}{n}+\frac{1}{d}<1$
- Boyd, Mitchell (2023): examined 2-parameter family $f_{a, c}(z)=z^{n}+\frac{a}{z^{n}}+c$, where $n \geq 3$

Background

- Devaney (2006): proved existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{n}}$, where $n \geq 3$
- Jang, So, Marotta (2017): proved* existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{d}}$, where $\frac{1}{n}+\frac{1}{d}<1$
- Boyd, Mitchell (2023): examined 2-parameter family $f_{a, c}(z)=z^{n}+\frac{a}{z^{n}}+c$, where $n \geq 3$
- c real and fixed in $[-1,0]$: proved existence of $n-1$ baby \mathcal{M} in a-parameter plane

Background

- Devaney (2006): proved existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{n}}$, where $n \geq 3$
- Jang, So, Marotta (2017): proved* existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{d}}$, where $\frac{1}{n}+\frac{1}{d}<1$
- Boyd, Mitchell (2023): examined 2-parameter family $f_{a, c}(z)=z^{n}+\frac{a}{z^{n}}+c$, where $n \geq 3$
- c real and fixed in [-1, 0]: proved existence of $n-1$ baby \mathcal{M} in a-parameter plane
- c real and fixed in $[0,1]$ and n odd: same result

Background

- Devaney (2006): proved existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{n}}$, where $n \geq 3$
- Jang, So, Marotta (2017): proved* existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{d}}$, where $\frac{1}{n}+\frac{1}{d}<1$
- Boyd, Mitchell (2023): examined 2-parameter family $f_{a, c}(z)=z^{n}+\frac{a}{z^{n}}+c$, where $n \geq 3$
- c real and fixed in $[-1,0]$: proved existence of $n-1$ baby \mathcal{M} in a-parameter plane
- c real and fixed in $[0,1]$ and n odd: same result
- a real and fixed in [1, 4]: proved existence of $2 n$ baby \mathcal{M} in c-parameter plane (n per distinct critical value)

Background

- Devaney (2006): proved existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{n}}$, where $n \geq 3$
- Jang, So, Marotta (2017): proved* existence of $n-1$ baby \mathcal{M} in a-parameter plane for $f_{a}(z)=z^{n}+\frac{a}{z^{d}}$, where $\frac{1}{n}+\frac{1}{d}<1$
- Boyd, Mitchell (2023): examined 2-parameter family $f_{a, c}(z)=z^{n}+\frac{a}{z^{n}}+c$, where $n \geq 3$
- c real and fixed in $[-1,0]$: proved existence of $n-1$ baby \mathcal{M} in a-parameter plane
- c real and fixed in $[0,1]$ and n odd: same result
- a real and fixed in [1, 4]: proved existence of $2 n$ baby \mathcal{M} in c-parameter plane (n per distinct critical value)
- In all cases, baby \mathcal{M} are located by tracking behavior of segments of certain annuli under one application of f.

Boyd-Mitchell set, $z^{\wedge} n+a / z^{\wedge} n+c, n=3, a=0.5, c=$ variable Boundedness Locus of $\mathrm{V}+\quad$ Boundedness Locus of V -

Theorem (Meyer, S., Wang)
Let $f_{a, c}(z)=z^{n}+\frac{a}{z^{d}}+c$, with $n, d \geq 3$. Fix real $a \geq k(n, d)$. Then there exist $n+d$ baby \mathcal{M} in the boundedness locus in the c-parameter plane.

Results

Theorem (Meyer, S., Wang)

Let $f_{a, c}(z)=z^{n}+\frac{a}{z^{d}}+c$, with $n, d \geq 3$. Fix real $a \geq k(n, d)$.
Then there exist $n+d$ baby \mathcal{M} in the boundedness locus in the c-parameter plane. Furthermore, each critical value of f has $\operatorname{gcd}(n, d)$ baby \mathcal{M} associated with its orbit.

Starting from Analysis Basics

Some sample problems from the

 first week:2. Express the following complex numbers in the form $a+b i$.
(a) $(2+3 i)+(4+i)$
(b) $(2+3 i)(4+i)$
(c) $\frac{2+3 i}{4+i}$
(d) $\frac{1}{4+i}-\frac{1}{2+3 i}$
3. Use the epsilon-delta definition to prove the following limits.
(a) $\lim _{z \rightarrow 2+i} 2 z-3=1+2 i$
(b) $\lim _{z \rightarrow i} z^{2}=-1$
(c) $\lim _{z \rightarrow 2 i} \frac{1}{z}=-\frac{1}{2} i$
4. Find a conformal mapping that maps each of the following regions onto the unit disk $B_{0}(1)$.
(a) The upper-half unit disk $\left\{z \in \mathbb{C}|\operatorname{Im}(z)>0,|z|<1\}\right.$. Note: z^{2} doesn't work because it says $\operatorname{Im}(z)>0$, and this would miss the non-negative real axis segment.
(b) The sector $\{z \in \mathbb{C}: \mid \arg (z)<\pi / 4\}$.
(c) The strip $\{z \in \mathbb{C}: \mid \operatorname{Im}(z)<\pi / 2\}$. Bonus points if you can make so that $f(\pi i / 4)=0$.

Starting from Analysis Basics

Some sample problems from the first week:
2. Express the following complex numbers in the form $a+b i$.
(a) $(2+3 i)+(4+i)$
(b) $(2+3 i)(4+i)$
(c) $\frac{2+3 i}{4+i}$
(d) $\frac{1}{4+i}-\frac{1}{2+3 i}$
9. Use the epsilon-delta definition to prove the following limits.
(a) $\lim _{z \rightarrow 2+i} 2 z-3=1+2 i$
(b) $\lim _{z \rightarrow i} z^{2}=-1$
(c) $\lim _{z \rightarrow 2 i} \frac{1}{z}=-\frac{1}{2} i$
6. Find a conformal mapping that maps each of the following regions onto the unit disk $B_{0}(1)$.
(a) The upper-half unit disk $\left\{z \in \mathbb{C}|\operatorname{Im}(z)>0,|z|<1\}\right.$. Note: z^{2} doesn't work because it says $\operatorname{Im}(z)>0$, and this would miss the non-negative real axis segment.
(b) The sector $\{z \in \mathbb{C}: \mid \arg (z)<\pi / 4\}$.
(c) The strip $\{z \in \mathbb{C}: \mid \operatorname{Im}(z)<\pi / 2\}$. Bonus points if you can make so that $f(\pi i / 4)=0$.

Sample of a proof they wrote towards the end of the project:

Proof. Recall that

$$
\Gamma=\left\{z^{4}+\frac{a}{z^{3}}+c \left\lvert\, z=1.8 a^{\frac{4}{\tau}} e^{i \theta}\right.,-\pi<\theta \leq \pi\right\} .
$$

Let $z \in \Gamma$. We then have that

We wish to show that

$$
\left|k^{n} a^{\frac{n^{2}}{m}}-k^{-d} a^{\frac{m-n d}{m}}-\sqrt{8} a^{\frac{n}{m}}\right|>k a^{\frac{n}{m}}
$$

Since $k a^{\frac{n}{m}}$ is positive, it suffices to show

$$
k^{n} a^{\frac{n^{2}}{m}}-k^{-d} a^{\frac{m-n d}{m}}-\sqrt{8} a^{\frac{n}{m}}>k a^{\frac{n}{m}}
$$

Developing and Utilizing Coding Skills

Early image using code written

from scratch:

Developing and Utilizing Coding Skills

Early image using code written from scratch:

Image generated by code we adapted from online sources:

Visual Intuition and Beauty

Visual Intuition and Beauty

Daniel Stoertz

A Comprehensive Anecdote

These three aspects of the project came together in the most interesting thing we encountered.

A Comprehensive Anecdote

These three aspects of the project came together in the most interesting thing we encountered.

Generalized baby Mandelbrot sets adorned with halos in families of rational maps

HyeGyong Jang ${ }^{\text {a }}$, YongNam So ${ }^{\text {a }}$ and Sebastian M. Marotta ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Mathematics, University of Science Pyongyang, Pyongyang, Korea; ${ }^{\text {b }}$ Department of Mathematics, Boston University, Boston, MA, USA

Abstract

We consider the family of rational maps given by $F_{\lambda}(z)=z^{n}+\lambda / z^{d}$ where $n, d \in \mathbb{N}$ with $1 / n+1 / d<1$, the variable $z \in \mathbb{C}$ and the parameter $\lambda \in \mathbb{C}$. It is known [1] that when $n=d \geq 3$ there are $n-1$ small copies of the Mandelbrot set symmetrically located around the origin in the parameter λ-plane. These baby Mandelbrot sets have 'antennas' attached to the boundaries of Sierpiński holes. Sierpiński holes are open simply connected subsets of the parameter space for which the Julia sets of F_{λ} are Sierpiński curves. In this paper we generalize the symmetry properties of F_{λ} and the existence of the $n-1$ baby Mandelbrot sets to the case when $1 / n+1 / d<1$ where n is not necessarily equal to d.

ARTICLE HISTORY

Received 12 October 2016
Accepted 27 October 2016

KEYWORDS

Julia sets; Mandelbrot set; rational maps; complex dynamics

AMS SUBJECT

 CLASSIFICATIONS37f10

To apply the machinery of Douady and Hubbard, for each parameter value λ there must exist a neighborhood U_{λ}^{\prime} of the critical number such that the family $f_{\lambda}: U_{\lambda}^{\prime} \rightarrow f\left(U_{\lambda}^{\prime}\right)=U_{\lambda}$ is polynomial-like of degree 2 .

To apply the machinery of Douady and Hubbard, for each parameter value λ there must exist a neighborhood U_{λ}^{\prime} of the critical number such that the family $f_{\lambda}: U_{\lambda}^{\prime} \rightarrow f\left(U_{\lambda}^{\prime}\right)=U_{\lambda}$ is polynomial-like of degree 2 .

References

(1) R. L. Devaney, Baby Mandelbrot sets adorned with halos in families of rational maps, Complex Dynamics, 396 (2006), 37-50.

囯 A. Douady, J.H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18, no. 4, (1985), 287-343.
(in Hang, Y. So, S. Marotta, Generalized baby Mandelbrot sets adorned with halos in families of rational maps, J. Difference Equ. Appl., 3, no. 23 (2017), 503-520.S. Boyd, A. J. Mitchell, The boundedness locus and baby Mandelbrot sets for some generalized McMullen maps, Int. J. Bifurc. Chaos, 33, no. 9, (2023).

