## Mandelbrot Breadcrumbs Engaging Undergraduates in Complex Dynamics Research

Daniel Stoertz they/them/their

St. Olaf College

AMS Spring Central Sectional Meeting, April 21, 2024



Overview of the Project



Good for Undergraduates

- Starting from Analysis Basics
- Developing and Utilizing Coding Skills
- Visual Intuition and Beauty



A Comprehensive Anecdote

#### • Title: Mandelbrot Breadcrumbs

Daniel Stoertz Mandelbrot Breadcrumbs

#### • Title: Mandelbrot Breadcrumbs

#### • Part of St. Olaf College's CURI program

- Title: Mandelbrot Breadcrumbs
- Part of St. Olaf College's CURI program
- Goal: Prove the existence of baby Mandelbrot sets in the boundedness locus of either parameter plane for the family

$$f_{a,c}(z)=z^n+\frac{a}{z^d}+c,$$

where  $n, d \geq 3$ .

- Title: Mandelbrot Breadcrumbs
- Part of St. Olaf College's CURI program
- Goal: Prove the existence of baby Mandelbrot sets in the boundedness locus of either parameter plane for the family

$$f_{a,c}(z)=z^n+\frac{a}{z^d}+c,$$

where  $n, d \geq 3$ .

• Team of two undergraduate researchers, Murali Meyer and Mike Wang.

| <b>Overview of the Project</b> | Good for Undergraduates | A Comprehensive Anecdote |
|--------------------------------|-------------------------|--------------------------|
| Background                     |                         |                          |

• The Mandelbrot set M is the boundedness locus of the critical point z = 0 for the one-parameter family  $f_c(z) = z^2 + c$ .



• The Mandelbrot set  $\mathcal{M}$  is the boundedness locus of the critical point z = 0 for the one-parameter family  $f_c(z) = z^2 + c$ .





• The Mandelbrot set  $\mathcal{M}$  is the boundedness locus of the critical point z = 0 for the one-parameter family  $f_c(z) = z^2 + c$ .



• This idea can be applied to other parameter families.

A Comprehensive Anecdote



| Overview | of | the | Project |
|----------|----|-----|---------|
| 0000000  | )  |     |         |

A Comprehensive Anecdote

## Background

• Devaney (2006): proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^n}$ , where  $n \ge 3$ 

| Overview | of | the | Project |
|----------|----|-----|---------|
| 0000000  | )  |     |         |

A Comprehensive Anecdote

- Devaney (2006): proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^n}$ , where  $n \ge 3$
- Jang, So, Marotta (2017): proved\* existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^d}$ , where  $\frac{1}{n} + \frac{1}{d} < 1$

#### Overview of the Project

Good for Undergraduates

A Comprehensive Anecdote

- Devaney (2006): proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^n}$ , where  $n \ge 3$
- Jang, So, Marotta (2017): proved\* existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^d}$ , where  $\frac{1}{n} + \frac{1}{d} < 1$
- Boyd, Mitchell (2023): examined 2-parameter family  $f_{a,c}(z) = z^n + \frac{a}{z^n} + c$ , where  $n \ge 3$

A Comprehensive Anecdote

- Devaney (2006): proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^n}$ , where  $n \ge 3$
- Jang, So, Marotta (2017): proved\* existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^d}$ , where  $\frac{1}{n} + \frac{1}{d} < 1$
- Boyd, Mitchell (2023): examined 2-parameter family  $f_{a,c}(z) = z^n + \frac{a}{z^n} + c$ , where  $n \ge 3$ 
  - c real and fixed in [−1,0]: proved existence of n − 1 baby M in a-parameter plane

A Comprehensive Anecdote

- Devaney (2006): proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^n}$ , where  $n \ge 3$
- Jang, So, Marotta (2017): proved\* existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^d}$ , where  $\frac{1}{n} + \frac{1}{d} < 1$
- Boyd, Mitchell (2023): examined 2-parameter family  $f_{a,c}(z) = z^n + \frac{a}{z^n} + c$ , where  $n \ge 3$ 
  - c real and fixed in [-1,0]: proved existence of n-1 baby  $\mathcal M$  in *a*-parameter plane
  - c real and fixed in [0, 1] and n odd: same result

A Comprehensive Anecdote

- Devaney (2006): proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^n}$ , where  $n \ge 3$
- Jang, So, Marotta (2017): proved\* existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^d}$ , where  $\frac{1}{n} + \frac{1}{d} < 1$
- Boyd, Mitchell (2023): examined 2-parameter family  $f_{a,c}(z) = z^n + \frac{a}{z^n} + c$ , where  $n \ge 3$ 
  - c real and fixed in [-1,0]: proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane
  - c real and fixed in [0,1] and n odd: same result
  - *a* real and fixed in [1,4]: proved existence of 2*n* baby  $\mathcal{M}$  in *c*-parameter plane (*n* per distinct critical value)

A Comprehensive Anecdote

- Devaney (2006): proved existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^n}$ , where  $n \ge 3$
- Jang, So, Marotta (2017): proved\* existence of n-1 baby  $\mathcal{M}$  in *a*-parameter plane for  $f_a(z) = z^n + \frac{a}{z^d}$ , where  $\frac{1}{n} + \frac{1}{d} < 1$
- Boyd, Mitchell (2023): examined 2-parameter family  $f_{a,c}(z) = z^n + \frac{a}{z^n} + c$ , where  $n \ge 3$ 
  - c real and fixed in [-1,0]: proved existence of n-1 baby  $\mathcal M$  in *a*-parameter plane
  - c real and fixed in [0,1] and n odd: same result
  - *a* real and fixed in [1,4]: proved existence of 2*n* baby  $\mathcal{M}$  in *c*-parameter plane (*n* per distinct critical value)
- In all cases, baby M are located by tracking behavior of segments of certain annuli under one application of f.

A Comprehensive Anecdote

#### Jang-So set, z^n+a/z^d, n=2, d=3



A Comprehensive Anecdote

#### Boyd-Mitchell set, z^n+a/z^n+c, n=3, a=0.5, c=variable

Boundedness Locus of V+

Boundedness Locus of V-



#### Results

#### Theorem (Meyer, S., Wang)

Let  $f_{a,c}(z) = z^n + \frac{a}{z^d} + c$ , with  $n, d \ge 3$ . Fix real  $a \ge k(n, d)$ . Then there exist n + d baby  $\mathcal{M}$  in the boundedness locus in the *c*-parameter plane.

#### Results

#### Theorem (Meyer, S., Wang)

Let  $f_{a,c}(z) = z^n + \frac{a}{z^d} + c$ , with  $n, d \ge 3$ . Fix real  $a \ge k(n, d)$ . Then there exist n + d baby  $\mathcal{M}$  in the boundedness locus in the *c*-parameter plane. Furthermore, each critical value of *f* has gcd(n, d) baby  $\mathcal{M}$  associated with its orbit.

### Starting from Analysis Basics

# Some sample problems from the first week:

2. Express the following complex numbers in the form a + bi.

$$\begin{array}{l} ({\rm a}) & (2+3i)+(4+i) \\ ({\rm b}) & (2+3i)(4+i) \\ ({\rm c}) & \frac{2+3i}{4+i} \\ ({\rm d}) & \frac{1}{4+i}-\frac{1}{2+3i} \end{array}$$

9. Use the epsilon-delta definition to prove the following limits.

(a) 
$$\lim_{z \to 2+i} 2z - 3 = 1 + 2$$
  
(b)  $\lim_{z \to i} z^2 = -1$   
(c)  $\lim_{z \to 2i} \frac{1}{z} = -\frac{1}{2}i$ 

6. Find a conformal mapping that maps each of the following regions onto the unit disk B<sub>0</sub>(1).

- (a) The upper-half unit disk {z ∈ C | Im(z) > 0, |z| < 1}. Note: z<sup>2</sup> doesn't work because it says Im(z) > 0, and this would miss the non-negative real axis segment.
- (b) The sector  $\{z \in \mathbb{C} : | \arg(z) < \pi/4 \}$ .
- (c) The strip  $\{z \in \mathbb{C} : | \operatorname{Im}(z) < \pi/2 \}$ . Bonus points if you can make so that  $f(\pi i/4) = 0$ .

## Starting from Analysis Basics

# Some sample problems from the first week:

- 2. Express the following complex numbers in the form a + bi.
  - $\begin{array}{l} ({\rm a}) & (2+3i)+(4+i) \\ ({\rm b}) & (2+3i)(4+i) \\ ({\rm c}) & \frac{2+3i}{4+i} \\ ({\rm d}) & \frac{1}{4+i}-\frac{1}{2+3i} \end{array}$
- 9. Use the epsilon-delta definition to prove the following limits.
  - (a)  $\lim_{z \to 2+i} 2z 3 = 1 + 2i$ (b)  $\lim_{z \to i} z^2 = -1$ (c)  $\lim_{z \to 2i} \frac{1}{z} = -\frac{1}{2}i$

6. Find a conformal mapping that maps each of the following regions onto the unit disk B<sub>0</sub>(1).

- (a) The upper-half unit disk {z ∈ C | Im(z) > 0, |z| < 1}. Note: z<sup>2</sup> doesn't work because it says Im(z) > 0, and this would miss the non-negative real axis segment.
- (b) The sector  $\{z \in \mathbb{C} : | \arg(z) < \pi/4\}$ .
- (c) The strip {z ∈ C : |Im(z) < π/2}. Bonus points if you can make so that f(πi/4) = 0.</p>

# Sample of a proof they wrote towards the end of the project:

Proof. Recall that

$$\Gamma = \left\{ z^4 + \frac{a}{z^3} + c \ | \ z = 1.8 a^{\frac{4}{7}} e^{i\theta}, \ -\pi < \theta \leq \pi \right\}.$$

Let 
$$z \in \Gamma$$
. We then have that

$$\begin{split} |z| &= \left| (ka^{\frac{n}{m}}e^{i\theta})^n + \frac{a}{(ka^{\frac{n}{m}}e^{i\theta})^d} + c \right| \\ &\geq \left| |(ka^{\frac{n}{m}}e^{i\theta})^n| - \frac{1}{(ka^{\frac{n}{m}}e^{i\theta})^d} - |c| \right| \\ &= \left| k^n a^{\frac{n}{m}} - \frac{1}{k^{ta}} \frac{1}{a^{taan}} - |c| \right| \\ &= \left| k^n a^{\frac{n}{m}} - k^{-d} \frac{n^{m-d}}{a^{m-d}} - |c| \right| \\ &> \left| k^n a^{\frac{n}{m}} - k^{-d} \frac{n^{m-d}}{a^{m-d}} - \sqrt{8} a^{\frac{n}{m}} \right| \end{split}$$

We wish to show that

$$\left|k^na^{\frac{n^2}{m}}-k^{-d}a^{\frac{m-nd}{m}}-\sqrt{8}a^{\frac{n}{m}}\right|>ka^{\frac{n}{m}}.$$

Since  $ka^{\frac{n}{m}}$  is positive, it suffices to show

$$k^{n}a^{\frac{n^{2}}{m}} - k^{-d}a^{\frac{m-nd}{m}} - \sqrt{8}a^{\frac{n}{m}} > ka^{\frac{n}{m}}$$

Daniel Stoertz Mandelbrot Breadcrumbs

A Comprehensive Anecdote

# Developing and Utilizing Coding Skills

# Early image using code written from scratch:



A Comprehensive Anecdote

## Developing and Utilizing Coding Skills

Early image using code written from scratch:



# Image generated by code we adapted from online sources:



A Comprehensive Anecdote

### Visual Intuition and Beauty



A Comprehensive Anecdote

#### Visual Intuition and Beauty



Overview of the Project

#### Good for Undergraduates ○○○●

A Comprehensive Anecdote



#### A Comprehensive Anecdote

These three aspects of the project came together in the most interesting thing we encountered.

#### A Comprehensive Anecdote

These three aspects of the project came together in the most interesting thing we encountered.

# Generalized baby Mandelbrot sets adorned with halos in families of rational maps

HyeGyong Jang<sup>a</sup>, YongNam So<sup>a</sup> and Sebastian M. Marotta<sup>b</sup>

<sup>a</sup>Faculty of Mathematics, University of Science Pyongyang, Pyongyang, Korea; <sup>b</sup>Department of Mathematics, Boston University, Boston, MA, USA

#### ABSTRACT

We consider the family of rational maps given by  $F_{\lambda}(z) = z^n + \lambda/z^d$ where  $n, d \in \mathbb{N}$  with 1/n + 1/d < 1, the variable  $z \in \mathbb{C}$  and the parameter  $\lambda \in \mathbb{C}$ . It is known [1] that when  $n = d \ge 3$  there are n - 1small copies of the Mandelbrot set symmetrically located around the origin in the parameter  $\lambda$ -plane. These baby Mandelbrot sets have 'antennas' attached to the boundaries of Sierpiński holes. Sierpiński holes are open simply connected subsets of the parameter space for which the Julia sets of  $F_{\lambda}$  are Sierpiński curves. In this paper we generalize the symmetry properties of  $F_{\lambda}$  and the existence of the n - 1 baby Mandelbrot sets to the case when 1/n + 1/d < 1 where nis not necessarily equal to d.

#### **ARTICLE HISTORY**

Received 12 October 2016 Accepted 27 October 2016

#### **KEYWORDS**

Julia sets; Mandelbrot set; rational maps; complex dynamics

#### AMS SUBJECT CLASSIFICATIONS 37f10

To apply the machinery of Douady and Hubbard, for each parameter value  $\lambda$  there must exist a neighborhood  $U'_{\lambda}$  of the critical number such that the family  $f_{\lambda} : U'_{\lambda} \to f(U'_{\lambda}) = U_{\lambda}$  is polynomial-like of degree 2.

To apply the machinery of Douady and Hubbard, for each parameter value  $\lambda$  there must exist a neighborhood  $U'_{\lambda}$  of the critical number such that the family  $f_{\lambda} : U'_{\lambda} \to f(U'_{\lambda}) = U_{\lambda}$  is polynomial-like of degree 2.



A Comprehensive Anecdote













#### References

- R. L. Devaney, Baby Mandelbrot sets adorned with halos in families of rational maps, Complex Dynamics, 396 (2006), 37-50.
- A. Douady, J.H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18, no. 4, (1985), 287-343.
- H. Jang, Y. So, S. Marotta, *Generalized baby Mandelbrot sets adorned with halos in families of rational maps*, J. Difference Equ. Appl., **3**, no. 23 (2017), 503-520.
- S. Boyd, A. J. Mitchell, The boundedness locus and baby Mandelbrot sets for some generalized McMullen maps, Int. J. Bifurc. Chaos, 33, no. 9, (2023).