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Julia Limiting Directions

Let f : C → C be a transcendental entire function.

The iterates of f are defined by f 1 = f , f k = f ◦ f k−1

The Julia set J(f ) is the set of chaotic behavior and can be
defined via a blowing up property

From the Great Picard Theorem, J(f ) is unbounded.

Definition

Let f be a transcendental entire function. The set of Julia limiting
directions is L(f ) = {e iθ : lim

m→∞
arg(zm) = θ for a sequence

(zm)
∞
m=1 ⊂ J(f ) with |zm| increasing and lim

m→∞
zm = ∞} ⊂ S1.
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f (z) = ez

Example

Consider f (z) = ez . Then, J(f ) = C and L(f ) = S1.

Figure: J(ez)
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f (z) = ez/5

Example

Consider f (z) = ez/5. Then, J(f ) is a Cantor bouquet and
L(f ) = {z ∈ S1 : Re(z) ≥ 1}.

Figure: J(ez/5)
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Measure of L(f )

Theorem (Qiao, 2001)

Let f be a transcendental entire function of lower order λ < ∞.
Then there exists a closed interval I ⊂ S1 such that I ⊂ L(f ) and
m(I ) ≥ π/max(1/2, λ). In particular, if λ < 1/2, then L(f ) = S1.

Theorem (Qiu and Wu, 2006)

Let f be a meromorphic function of lower order µ < ∞ and
deficiency δ(∞, f ) > 0. Then,

m(L(f )) ≥ min

(
2π, 4

µ arcsin
√

δ(∞,f )
2

)
.
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Quasiregular Maps

We would like to generalize these types of results to higher
dimensions.

Quasiregular (qr) maps generalize analytic functions

qr maps send circles to ellipses with bounded distortion on
small scales instead of circles to circles
there exists a constant K ≥ 1 that bounds the distortion
qr maps are differentiable almost everywhere
qr maps are of transcendental-type if there is an essential
singularity at ∞

Example

Let f (x , y) = (2x , y). Then, f is 2-quasiregular.
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Properties of Quasiregular Maps

Given an unbounded domain U of Rn and a function f : U → Rn,
we define MU(r , f ) = sup

|x |≤r ,x∈U
|f (x)|, as long as B(0, r) meets U.

If U = Rn, we have M(r , f ) = sup
|x |=r

|f (x)|.

Theorem (Bergweiler, 2006)

Let f : Rn → Rn be a quasiregular map. Then f is of
transcendental-type if and only if

lim
r→∞

logM(r , f )

log r
= ∞.

The order of an entire quasiregular map f : Rn → Rn is

µf = lim sup
r→∞

(n − 1)
log logM(r , f )

log r
.
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Dynamics of Quasiregular Maps

Definition

Let f : Rn → Rn be a transcendental-type quasiregular map. The
Julia set of f is defined to be

J(f ) = {x ∈ Rn : cap
(
Rn\ ∪∞

k=1 f
k(U)

)
= 0}

for every neighborhood U of x where cap is the conformal capacity
of a condenser. The quasi-Fatou set is QF (f ) = Rn\J(f ).
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Julia Limiting Directions

From Rickman’s Theorem, we know J(f ) is unbounded for an
entire transcendental-type qr map f : Rn → Rn.

Definition

Let n ≥ 2 and f : Rn → Rn be a transcendental-type quasiregular
map. We say ζ ∈ Sn−1 is a Julia limiting direction of f if there
exists a sequence (xm)

∞
m=1 in J(f ) with lim

m→∞
|xm| = ∞ and

lim
m→∞

xm/|xm| = ζ.

As before, we denote the set of Julia limiting directions by L(f ).
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Previous Results

It is not hard to see that L(f ) is a closed, non-empty subset of
Sn−1.

Theorem (Fletcher, 2021)

Let n ≥ 2 and f : Rn → Rn be a K-quasiregular map of
transcendental-type. Suppose further that there exist α > 1 and
δ > 0 such that for all large r there exists s ∈ [r , αr ] such that

min
|x |=s

|f (x)| ≥ δ max
|x |=r

|f (x)|.

Then, L(f ) = Sn−1.
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Main Result

Denote the (n − 1)-dimensional area of a subset E of Sn−1 by
m(E ) and the topological hull of U by T (U).

Theorem (Fletcher and S., 2023)

Let f : Rn → Rn be a transcendental-type K-quasiregular map of
order µf < ∞ for which T (U) ̸= Rn for any quasi-Fatou
component U. Then there exists a component E ⊂ L(f ) with

m(E ) ≥ min(cnK
(2−2n)/nµ1−n

f , ωn−1)

where cn > 0 is a constant depending only on n and
ωn−1 = m(Sn−1).

If µf ≤ K−2/n
(

cn
ωn−1

)1/(n−1)
, then L(f ) = Sn−1.
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Proof Sketch

1 Suppose f is a transcendental-type qr map with order µf .
Then, L(f ) is a closed non-empty subset of Sn−1. Suppose
towards a contradiction that the largest component of L(f )
has measure less than M = cnK

(2−2n)/nµ1−n
f .
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Proof Sketch

2 Let F = {U : U is a domain in Sn−1 such that ∂U ⊂
Sn−1\L(f ) and m(U) < M}. Note that F is an open cover of
Sn−1.
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Proof Sketch

3 As notation, let Sx0,E = {y = c(x − x0) : c > 0, x ∈ E}. From
a result by Fletcher, in sectors in QF (f ), we have
|f (x)| = O(|x |d). Therefore, along ∂S0,U , we have
|f (x)| = O(|x |d).
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Proof Sketch

4 Since |f (x)| = O(|x |d) along ∂S0,U , we can use a
Phragmén-Lindelöf result with the order µf to get a growth
condition in U which contradicts f being of
transcendental-type.
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Phragmén-Lindelöf Principle

For transcendental entire functions f : C → C, log |f | is
subharmonic. Then we can use this result.

Theorem (Phragmén-Lindelöf Principle)

Let u be a subharmonic function in a sector
S = {z ∈ C : |arg(z)| < θ/2} for θ ≤ 2π. Suppose
lim sup
x→y

u(x) ≤ 0 for all y ∈ ∂S. Then either u ≤ 0 in S or

lim inf
r→∞

M(r , u)r−π/θ > 0 where M(r , u) = sup
|z|≤r

|u(z)|.

Let u(z) = log |f (z)|. Then, this result gives us either
|f (z)| ≤ 1 in S or lim inf

r→∞
M(r , f )er

−π/θ
> 0.

Suppose |f (z)| ≤ C |z |d on ∂S . Then, |f (z)|
C |z|d ≤ 1 on ∂S , so we

get |f (z)| ≤ C |z |d on S or lim inf
r→∞

M(r , f )er
−π/θ

> 0.
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Phragmén-Lindelöf Results for Quasiregular Maps

For a K -qr map f : Rn → Rn, log |f | is sub-F -extremal where the
structural constants α and β can be written in terms of K .

Theorem (Granlund, Lindqvist, Martio, 1985)

Suppose that S = Sx0,E is a sector Rn and that F is a variational
kernel of type n in S with structural constants α and β. Let
u : S → R ∪ {−∞} be a sub-F -extremal in S such that
lim sup
x→y

u(x) ≤ 0 for y ∈ ∂S. Then either u(x) ≤ 0 in S or

lim inf
r→∞

MS(r , u)r
−q > 0

where MS(r , u) = sup
|x |≤r ,x∈S

u(x), q = dnm(E )−1/(n−1)(α/β)1/n,

and dn > 0 is a constant depending only on n.
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Phragmén-Lindelöf Results for Quasiregular Maps

Theorem (Fletcher and S., 2023)

Suppose that S = Sx0,E is a sector in Rn and that F : S × Rn → R
is a variational kernel of type n in S with structural constants α
and β. Let u : S → R ∪ {−∞} be a sub-F -extremal in S such that
lim sup
x→y

u(x) ≤ C log+ |y | at each y ∈ ∂S for some constant C > 0.

Then given φ > 0, either for all sufficiently large |x | in S we have

u(x) ≤ C (1 + φ) log |x |

or
lim sup
r→∞

MS(r , u)r
−D > 0

where D = dnm(E )−1/(n−1)(α/β)1/nφ/(1 + φ) and dn > 0
depends only on n.
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Inverse Problem

Question

Given a set E ⊂ Sn−1, can we find a quasiregular map
f : Rn → Rn such that L(f ) = E?

Theorem (Nicks and Sixsmith, 2018)

There exists a quasiregular map of transcendental-type
g : R3 → R3 that is equal to the identity map in a half-space.

By considering quasiconformal conjugates, Fletcher gave a partial
answer to the inverse problem in R3: when E consists of the union
of the closures of finitely many domains in S2, there exists a
quasiregular map of finite lower order such that E = L(f ).
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Inverse Problem

To solve the inverse problem, we would like to construct a qr map
with one Julia limiting direction similar to the construction by
Nicks and Sixsmith.

As notation, let H(x0, θ,w) ⊂ Rn be a half-beam with width
2w > 0 along the center ray R = {x ∈ Rn : x−x0

|x−x0| = θ} starting at

x0 ∈ Rn extending in the θ ∈ Sn−1 direction.
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Inverse Problem

Theorem (Fletcher and S., 2023)

Let E ⊂ Sn−1 be closed. Suppose that there exists a quasiregular
map F that satisfies

1 L(F ) = {e1}
2 F (x) = x for x ∈ Rn\H(0, e1, 1).

Then, there exists a quasiregular map f with L(f ) = E.

Theorem (Fletcher and S., 2023)

Let f : Rn → Rn be a transcendental-type K-quasiregular map for
which T (U) ̸= Rn for any quasi-Fatou component U and
L(f ) = {x0}. Then, f has infinite order.
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