Planar Quasiregular Linearization

Jacob Pratscher

Stephen F. Austin State University

AMS Central Sectional April 20th, 2024

Linearization Theorems in the Plane

Suppose *f* is holomorphic at $z_0 = 0$ with f(0) = 0 and $f'(0) = \lambda$:

$$f(z) = \lambda z + \sum_{n=2}^{\infty} a_n z^n$$
 then

Theorem (König's and Böttcher's Theorems)

In a neighborhood of 0 there is a holomorphic function ϕ so that

- König: $\phi \circ f(z) = \lambda \phi(z)$ when $|\lambda| \neq 0, 1$ or
- Böttcher: $\phi \circ f(z) = (\phi(z))^n$ when $\lambda = 0$.

2/17

Definition

Let *f* be a qr map in a neighborhood of $z_0 \in \mathbb{C}$ with $f(z_0) = z_0$.

We say z_0 is a geometrically attracting fixed point if there exist $\lambda \in (0, 1)$ and a neighborhood U of z_0 such that

$$|f(z) - z_0| \le \lambda |z - z_0| \quad \text{for } z \in U. \tag{1}$$

3/17

Generalizing to quasiregular maps

Let *f* be a qr map and 0 a geometrically (super)attracting fixed point.

Question:

Can we determine a suitable map *h* and a quasiconformal map ψ so that $\psi \circ f = h \circ \psi$?

Generalizing to quasiregular maps

Let *f* be a qr map and 0 a geometrically (super)attracting fixed point.

Question:

Can we determine a suitable map *h* and a quasiconformal map ψ so that $\psi \circ f = h \circ \psi$?

• Hinkkanen-Martin-Mayer (2004) shows that we can "linearize" *f* to a generalized derivative when *f* is uniformly quasiregular.

Generalizing to quasiregular maps

Let *f* be a qr map and 0 a geometrically (super)attracting fixed point.

Question:

Can we determine a suitable map *h* and a quasiconformal map ψ so that $\psi \circ f = h \circ \psi$?

- Hinkkanen-Martin-Mayer (2004) shows that we can "linearize" *f* to a generalized derivative when *f* is uniformly quasiregular.
- Fletcher-Fryer (2012), have a version of a Böttcher's coordinate for quasiregular mappings in the plane with constant complex dilatation.

Definition of generalized derivative

Definition (Gutlyanskii, Martio, Ryazanov, Vuorinen, (2000)) Let $f : D \to \mathbb{R}^n$ be a qr map, $D \subset \mathbb{R}^n$, and $x_0 \in D$. A generalized derivative φ of f at x_0 is defined by the following limit

$$\varphi(x) = \lim_{k \to \infty} \frac{f(x_0 + t_k x) - f(x_0)}{\rho_f(t_k)}$$
 (when it exists) (2)

where $(t_k)_{k=1}^{\infty} \to 0$, and each $t_k > 0$.

4 D N 4 B N 4 B N 4 B N

Definition of generalized derivative

Definition (Gutlyanskii, Martio, Ryazanov, Vuorinen, (2000)) Let $f : D \to \mathbb{R}^n$ be a qr map, $D \subset \mathbb{R}^n$, and $x_0 \in D$. A generalized derivative φ of f at x_0 is defined by the following limit

$$\varphi(x) = \lim_{k \to \infty} \frac{f(x_0 + t_k x) - f(x_0)}{\rho_f(t_k)}$$
 (when it exists) (2)

where $(t_k)_{k=1}^{\infty} \to 0$, and each $t_k > 0$.

Here, $\rho_f(t_k)$ is the mean radius of the image of $B(x_0, t_k)$ given by

$$\rho_f(t_k) = \left(\frac{\mu[f(B(x_0, t_k))]}{\mu[B(0, 1)]}\right)^{1/n},$$
(3)

where μ is the standard Lebesgue measure.

Jacob Pratscher	(SFASU)
-----------------	---------

イロト イポト イラト イラト

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear mapping. Since *f* is a linear mapping

$$\mu(f(B(x_0,t))) = t^n \mu(B(0,1)) J_f(x_0).$$

At x₀ we have

$$\rho_f(t) = t J_f(x_0)^{1/n}.$$

The generalized derivative of f at x_0 is

$$\lim_{t\to 0}\frac{f(x_0+tx)-f(x_0)}{tJ_f(x_0)^{1/n}}=\frac{f'(x_0)x}{J_f(x_0)^{1/n}}.$$

Generalized derivative example 2

Let $f(z) = z^d$, for $z \in \mathbb{C}$ with $0 < d \in \mathbb{Z}$. At $z_0 = 0$, we have

$$\rho_f(t) = \left(\frac{\mu(f(B(0,t)))}{\mu(B(0,1))}\right)^{1/2} = \left(\frac{\pi(t^d)^2}{\pi}\right)^{1/2} = t^d.$$

The generalized derivative of f at 0 is

$$\lim_{t\to 0} f_t(z) = \lim_{t\to 0} \frac{(tz)^d}{t^d} = z^d.$$

7/17

Generalized derivative example 2

Let $f(z) = z^d$, for $z \in \mathbb{C}$ with $0 < d \in \mathbb{Z}$. At $z_0 = 0$, we have

$$\rho_f(t) = \left(\frac{\mu(f(B(0,t)))}{\mu(B(0,1))}\right)^{1/2} = \left(\frac{\pi(t^d)^2}{\pi}\right)^{1/2} = t^d.$$

The generalized derivative of f at 0 is

$$\lim_{t\to 0} f_t(z) = \lim_{t\to 0} \frac{(tz)^d}{t^d} = z^d.$$

Note:

- Under the gen. deriv., we lose information on scaling, but maintain information about the shape of *f* near *x*₀.
- The set of gen. deriv. of f at x₀ is the infinitesimal space of f at x₀, denoted by T(x₀, f).
- We call $T(x_0, f)$ simple if there is only one gen. deriv. of f at x_0 .

Theorem (Gutlyanskii, Martio, Ryazanov, Vuorinen, (2000)) Let $f : U \to \mathbb{R}^n$, $n \ge 2$, be a non-constant qr map and $0 \in U$. If T(0, f) has only $g : \mathbb{R}^n \to \mathbb{R}^n$, with $f(0) = 0 \in U$, then f has rep.

$$f(\mathbf{x}) \sim \rho_f(|\mathbf{x}|) g\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) := \mathcal{D}(\mathbf{x}).$$
 (4)

Note: Our candidate for h is \mathcal{D} , if \mathcal{D} is quasiregular.

イロト イポト イラト イラト

Logarithmic transform

The blue region in the image of *f* is a Jordan domain not containing singularities and $\{0, f(0)\}$.

		 5 LP 7			2.40
Jacob Pratscher (SFASU)	Planar Quasiregular Linearization	A	April 20th	, 2024	9/17

Proposition (Fletcher-P (2023))

Suppose that $e^M > 0$ and let $f : B(0, e^M) \to \mathbb{R}^2$ be a qc map that fixes 0 and for some $0 < e^{t_0} < e^M$, the image of the circle centred at 0 of radius e^{t_0} under f is a non-rectifiable curve.

Then $\tilde{\rho}_f$ is not bi-Lipschitz at t_0 .

Recall:
$$\mathcal{D}(\mathbf{x}) = \rho_f(|\mathbf{x}|)g\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right)$$

BIP condition for the plane

Definition

Let R > 0 and let $f : B(0, R) \to \mathbb{C}$ be qr with f(0) = 0.

We say that *f* is a bounded integrable parameterization map if there exists P > 0 such that for every $t < \log R$, the parameterization $\gamma_t : [-\pi, \pi] \to \mathbb{C}$ defined by $\gamma_t(s) = \tilde{f}(t + is)$ satisfies

$$\int_{-\pi}^{\pi} |\gamma_t'(\boldsymbol{s})|^2 \ \boldsymbol{ds} \leq \boldsymbol{P}.$$

A (1) > A (2) > A (2) > .

BIP condition for the plane

Definition

Let
$$R > 0$$
 and let $f : B(0, R) \to \mathbb{C}$ be qr with $f(0) = 0$.

We say that *f* is a bounded integrable parameterization map if there exists P > 0 such that for every $t < \log R$, the parameterization $\gamma_t : [-\pi, \pi] \to \mathbb{C}$ defined by $\gamma_t(s) = \tilde{f}(t + is)$ satisfies

$$\int_{-\pi}^{\pi} |\gamma_t'(s)|^2 \, ds \leq {\sf P}.$$

Note: that for the case $f(z) = z^d$ we have $\tilde{f}(z) = dz$ and so

$$\int_{-\pi}^{\pi} |\gamma_t'(s)|^2 \, ds = 2\pi d^2.$$

In particular, P may depend on i(0, f).

Theorem (Fletcher-P (2023))

Let $K \ge 1$, R > 0 and let $f : B(0, R) \to \mathbb{C}$ be a simple BIP *K*-quasiregular map with f(0) = 0.

Then there exists L depending only on K and P such that

• $\widetilde{\rho_f}$ is L-bi-Lipschitz on $(-\infty, \log R)$ and

• $\widetilde{\mathcal{D}}$ is L-bi-Lipschitz for $\operatorname{Re}(z) < \log R$.

イロト イヨト イヨト イヨト

Theorem (Fletcher-P (2023))

Let $K \ge 1$, R > 0 and let $f : B(0, R) \to \mathbb{C}$ be a simple BIP *K*-quasiregular map with f(0) = 0.

Then there exists L depending only on K and P such that

- $\widetilde{\rho_f}$ is L-bi-Lipschitz on $(-\infty, \log R)$ and
- $\widetilde{\mathcal{D}}$ is L-bi-Lipschitz for $Re(z) < \log R$.

In particular, it follows from this result that \mathcal{D} itself is quasiregular on a neighbourhood of 0.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To do so we will define a sequence:

•
$$\psi_1 = \mathcal{D}^{-1} \circ t$$

•
$$\psi_{k+1} = \mathcal{D}^{-1} \circ \psi_k \circ f$$

E N 4 E N

To do so we will define a sequence:

•
$$\psi_1 = \mathcal{D}^{-1} \circ f$$

•
$$\psi_{k+1} = \mathcal{D}^{-1} \circ \psi_k \circ f$$

Strategy:

• We will look at logarithmic transform of the ψ_i .

イロト イポト イラト イラト

To do so we will define a sequence:

•
$$\psi_1 = \mathcal{D}^{-1} \circ f$$

•
$$\psi_{k+1} = \mathcal{D}^{-1} \circ \psi_k \circ f$$

Strategy:

- We will look at logarithmic transform of the ψ_i .
- We need to show that the sequence is:
 - uniformly convergent
 - there is a uniform bound on the maximal dilatations.

Needed Conditions and assumptions

Note we will need:

A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.

Needed Conditions and assumptions

Note we will need:

- A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.
- **B)** *f* has a simple infinitesimal space at 0.

A THE A THE

- A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.
- **B)** *f* has a simple infinitesimal space at 0.
- **Ca)** A uniform estimate on how close the comp.deriv. of \tilde{f} and $\tilde{\mathcal{D}}$ are.
- **Cb)** A uniform estimate on how close \tilde{f} and $\tilde{\mathcal{D}}$ are that guarantees:
- Cc) The comp. deriv. of $\widetilde{\mathcal{D}}$ are locally uniformly Hölder continuous.

- A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.
- **B)** *f* has a simple infinitesimal space at 0.
- **Ca)** A uniform estimate on how close the comp.deriv. of \tilde{f} and $\tilde{\mathcal{D}}$ are.
- **Cb)** A uniform estimate on how close \tilde{f} and $\tilde{\mathcal{D}}$ are that guarantees:
- Cc) The comp. deriv. of $\widetilde{\mathcal{D}}$ are locally uniformly Hölder continuous.
 - Minimizes the amount of distortion near 0 carried over to $\widetilde{\mathcal{D}}$ from *f*.

- A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.
- **B)** *f* has a simple infinitesimal space at 0.
- **Ca)** A uniform estimate on how close the comp.deriv. of \tilde{f} and $\tilde{\mathcal{D}}$ are.
- **Cb)** A uniform estimate on how close \tilde{f} and $\tilde{\mathcal{D}}$ are that guarantees:
- Cc) The comp. deriv. of $\widetilde{\mathcal{D}}$ are locally uniformly Hölder continuous.
 - Minimizes the amount of distortion near 0 carried over to $\widetilde{\mathcal{D}}$ from *f*.
 - Helps guarantee conjugacy is asymptotically conformal,

- A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.
- **B)** *f* has a simple infinitesimal space at 0.
- **Ca)** A uniform estimate on how close the comp.deriv. of \tilde{f} and $\tilde{\mathcal{D}}$ are.
- **Cb)** A uniform estimate on how close \tilde{f} and $\tilde{\mathcal{D}}$ are that guarantees:
- Cc) The comp. deriv. of $\widetilde{\mathcal{D}}$ are locally uniformly Hölder continuous.
 - Minimizes the amount of distortion near 0 carried over to $\widetilde{\mathcal{D}}$ from *f*.
 - Helps guarantee conjugacy is asymptotically conformal,
 - convergence of $\tilde{\psi}_k$'s, and

- A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.
- **B)** *f* has a simple infinitesimal space at 0.
- **Ca)** A uniform estimate on how close the comp.deriv. of \tilde{f} and $\tilde{\mathcal{D}}$ are.
- **Cb)** A uniform estimate on how close \tilde{f} and $\tilde{\mathcal{D}}$ are that guarantees:
- Cc) The comp. deriv. of $\widetilde{\mathcal{D}}$ are locally uniformly Hölder continuous.
 - Minimizes the amount of distortion near 0 carried over to $\widetilde{\mathcal{D}}$ from *f*.
 - Helps guarantee conjugacy is asymptotically conformal,
 - convergence of $\tilde{\psi}_k$'s, and
 - uniform bounds on the maximal dilatation.

- A) $f: U \to \mathbb{C}$ to be a BIP quasiregular mapping which fixes 0.
- **B)** *f* has a simple infinitesimal space at 0.
- **Ca)** A uniform estimate on how close the comp.deriv. of \tilde{f} and $\tilde{\mathcal{D}}$ are.
- **Cb)** A uniform estimate on how close \tilde{f} and $\tilde{\mathcal{D}}$ are that guarantees:
- Cc) The comp. deriv. of $\widetilde{\mathcal{D}}$ are locally uniformly Hölder continuous.
 - Minimizes the amount of distortion near 0 carried over to $\widetilde{\mathcal{D}}$ from *f*.
 - Helps guarantee conjugacy is asymptotically conformal,
 - convergence of $\tilde{\psi}_k$'s, and
 - uniform bounds on the maximal dilatation.
 - D) In the König's case, we need to bound λ to counteract the *L*-Bi-Lipschitz constant from $\widetilde{\mathcal{D}}$.

4 **A** N A **B** N A **B** N

Can we weaken some of the conditions to control steps in iterations to guarantee convergence and uniform bounds?

EN 4 EN

< 6 k

- Can we weaken some of the conditions to control steps in iterations to guarantee convergence and uniform bounds?
- **2** How unique is ψ ?

- A TE N - A TE N

< 6 b

- Can we weaken some of the conditions to control steps in iterations to guarantee convergence and uniform bounds?
- 2 How unique is ψ ?
- For quasiregular maps in three or higher dimensions, can we obtain a similar result even though the set of branch points is no longer discrete?

E N 4 E N

Thank You!

э

16/17

References I

- A. Fletcher, R. Fryer. On Böttcher coordinates and quasiregular maps, Contemp. Math. 575, volume title: Quasiconformal Mappings, Riemann Surfaces, and Teichmüller Spaces (2012), 53-76.
- A. Fletcher, J. Pratscher, On the mean radius of quasiconformal mappings, *Isr. J. Math.*, (2023). https://doi.org/10.1007/s11856-023-2583-8
- A. Fletcher, J. Pratscher, A unified approach to quasiregular linearization in the plane, arXiv:2308.08668.
- V. Gutlyanskii, O. Martio, V. Ryazanov, M. Vuorinen, Infinitesimal Geometry of Quasiregular Mappings, *Ann. Acad. Sci. Fenn.*, **25** (2000), 101-130.
- A. Hinkkanen, G. Martin, V. Mayer, Local dynamics of uniformly quasiregular mappings, *Math. Scand.*, **95** (2004), 80-100.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >