Dynamics of quasiregular maps

Dan Nicks

University of Nottingham

April 2024

Introduction

- This talk will survey some research aiming to generalise complex dynamics to quasiregular mappings on \mathbb{R}^d .
- Quasiregular maps were introduced in the mid-1960s and many results from classical function theory have quasiregular counterparts.
- We will discuss analogues of both polynomial / rational dynamics on $\mathbb{C} \cup \{\infty\}$ and transcendental dynamics on \mathbb{C} .
- We will mention the special case of *uniformly* quasiregular dynamics, but we will often work without this restriction.

Quasiregular mappings

Definition

A continuous $f : \mathbb{R}^d \to \mathbb{R}^d$ is quasiregular (qr) if $f \in W^1_{d,\text{loc}}(\mathbb{R}^d)$ and there exists $K_O \ge 1$ such that

$$\|Df(x)\|^d \leq K_O J_f(x)$$
 a.e.

where ||Df(x)|| is the norm of the derivative and $J_f(x)$ is the Jacobian.

- Informally, a qr map sends infinitesimal spheres to infinitesimal ellipsoids of bounded eccentricity.
- A mapping is called K-qr if the local distortion is $\leq K$.
- A *quasiconformal* map is simply an injective quasiregular map.
- Non-constant qr maps are open, discrete and almost everywhere differentiable (Reshetnyak, 1960s).

Simple examples

- $(x, y) \mapsto (Kx, y)$ is K-qr on \mathbb{R}^2 .
- On \mathbb{R}^d , $x \mapsto |x|^{\alpha} x$ is qr for $\alpha > -1$.
- Holomorphic functions on $\mathbb C$ are 1-qr.
- With $N \in \mathbb{N}$ and cyl. co-ords on \mathbb{R}^3 , the map $(r, \theta, x_3) \mapsto (r, N\theta, x_3)$.
- A non-constant qr map $f : \mathbb{R}^d \to \mathbb{R}^d$ is called *polynomial type* if $|f(x)| \to \infty$ as $|x| \to \infty$. Otherwise, f is *transcendental type*.
- f is polynomial type $\iff \deg(f) < \infty$.
- Can also consider quasiregular self-maps of R^d = R^d ∪ {∞} that are analogous to rational functions on C.

- If f, g are quasiregular, then f + g need **not** be qr, but $f \circ g$ is qr.
- If f is K-qr, then the *n*th iterate f^n is only K^n -qr in general. (*)

There are quasiregular analogues of Picard's and Montel's theorems:

Theorem (Rickman)

There exists a constant q = q(d, K) with the following property: every K-qr map $f : \mathbb{R}^d \to \mathbb{R}^d$ that omits q values must be constant.

Theorem (Miniowitz)

Let \mathcal{F} be a family of K-qr maps on a domain $D \subset \mathbb{R}^d$. If there exist distinct points a_1, \ldots, a_q that are omitted by every $f \in \mathcal{F}$, then \mathcal{F} is a normal family.

(*) means we can't apply "Montel" to family of iterates $\{f^n\}$ in general.

Uniformly quasiregular maps

- If every iterate f^n is K-quasiregular with the same K, then f is called *uniformly quasiregular* (uqr).
- For uqr maps, the usual definition of Fatou and Julia sets via normality works well.

Theorem (Hinkkanen, Martin, Mayer)

For a non-injective uniformly quasiregular map $f: \overline{\mathbb{R}^d} \to \overline{\mathbb{R}^d}$

- $J(f^{p}) = J(f);$
- J(f) is perfect;
- classification of periodic points and periodic Fatou components;
- J(f) = boundary of any attracting basins.

Blowing-up: If an open set U meets J(f) then Miniowitz's Montel theorem gives that $\overline{\mathbb{R}^d} \setminus O^+(U)$ contains $\leq q$ points.

Two open questions on uqr maps

(1) Do there exist uqr maps of transcendental type in dim \geq 3?

- (2) For uqr maps on $\overline{\mathbb{R}^d}$, is the Julia set the closure of the repelling periodic points?
 - Siebert showed that every Julia point is a limit of periodic points, and moreover that the answer to (2) is "yes" if J(f) ⊄ {post-critical set}.
 - Fletcher and Stoertz showed (2) is also "yes" for polynomial type uqr maps ℝ^d → ℝ^d for which J(f) is a Cantor set.
 - There are examples of uqr maps where J(f) is a wild Cantor set see Vyron Vellis talk.

Examples of qr maps

- The Zorich map $Z : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$ is a qr (not uqr) analogue of the exponential function.
 - ▶ It is periodic in the x₁ and x₂ directions (so is transcendental type).
 - ► Exponential growth/decay in x₃ direction: |Z(x₁, x₂, x₃)| = e^{x₃}. (Note Z maps the plane {x₃ = C} onto the sphere {|x| = e^C}.
- By interpolating, we can construct a qr map on ℝ³ that is the identity on {x₃ ≤ 0} and is like Z + id on {x₃ ≥ L}.
- **③** Let $d \in \mathbb{N}$. We can define a uniformly qr power map $P_d \colon \mathbb{R}^3 \to \mathbb{R}^3$ by

$$P_d(x) = Z(dZ^{-1}(x)).$$

(Compare with $z^d = \exp(d \log z)$ for $z \in \mathbb{C}$.) Then $|P_d(x)| = |x|^d$ and so the Julia set of P_d is the unit sphere.

Zorich and power maps work in any dimension $\mathbb{R}^n \to \mathbb{R}^n$.

Non-uniformly quasiregular dynamics

Now let $f : \mathbb{R}^d \to \mathbb{R}^d$ or $\overline{\mathbb{R}^d} \to \overline{\mathbb{R}^d}$ be *K*-qr, but <u>not</u> assumed uqr. So we can't apply the qr version of Montel's theorem to $\{f^n\}$.

Extending an idea of Sun and Yang we use a 'blowing-up' property to *define* the Julia set:

$$J(f) := \left\{ x : \text{for every nhd } U \text{ of } x, \ \mathbb{R}^d \setminus O^+(U) \text{ is small} \right\}.$$

Here "small" means conformal capacity zero. It follows immediately that J(f) is closed and completely invariant.

Theorem (Bergweiler (deg $< \infty$), Bergweiler + N. (deg $= \infty$)) The definition of J(f) above agrees with the usual one if f is uqr. If deg $(f) > K_I$, then $J(f) \neq \emptyset$ and, in fact, J(f) is infinite. Assume $f : \mathbb{R}^d \to \mathbb{R}^d$ or $\overline{\mathbb{R}^d} \to \overline{\mathbb{R}^d}$ is *K*-qr, with deg $(f) > K_I$. Recall

$$J(f) := \left\{ x : \text{for every nhd } U \text{ of } x, \ \mathbb{R}^d \setminus O^+(U) \text{ is small} \right\}.$$

Conjecture

• Equivalent to replace "small" by "finite" in J(f) definition.

•
$$J(f)$$
 is perfect and $J(f^p) = J(f)$.

The conjecture is open in general, but holds under a variety of extra hypotheses. In particular, it holds if

- dimension = 2; or
- f is locally Lipschitz; or
- f is trans type and bounded on some path to ∞ ; or
- f is trans type and has bounded local index.

Examples of Julia sets

- For Zorich map Z on ℝ³ and sufficiently small λ > 0, the Julia set J(λZ) is a Cantor bouquet.
 It is the complement of the attracting basin of the fixed point of λZ.
 [Bergweiler, (+N.)]
- For a modified Zorich map Z̃ and sufficiently large λ > 0, the Julia set J(λZ̃) = ℝ³. [Tsantaris]

The quasi-Fatou set

For a general quasiregular map f, we call the complement of the Julia set the *quasi-Fatou set*:

$$\mathcal{QF}(f) := \mathbb{R}^d \setminus J(f).$$

Note: no normality assumption!

Behaviour in QF(f) can be quite different to that in Fatou components in complex dynamics. Inside a single quasi-Fatou component we can have:

- several distinct attracting fixed points;
- ullet some points iterating to ∞ while others have bounded orbits.

Escaping sets

Let f be trans entire on \mathbb{C} or trans type qr on \mathbb{R}^d . We define

• the escaping set $I(f) = \{x : f^n(x) \to \infty\};$

 the fast escaping set A(f) ⊂ I(f), roughly points escaping faster than an iterated maximum modulus Mⁿ(r, f);

• the bounded orbit set $BO(f) = \{x : (f^n(x))_{n \ge 0} \text{ is bounded}\}.$

In complex dynamics,

$$J(f) = \partial I(f) = \partial A(f) = \partial BO(f).$$

In qr dynamics, $J(f) \subset \partial I(f) \cap \partial BO(f)$ but inclusion can be strict.

Theorem (Bergweiler, Fletcher, N.)
If f is qr such that
$$\liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log \log r} = \infty$$
, then $J(f) = \partial A(f)$.

Remark $J(f) = \partial A(f)$ gives a 'normality' property: if one point in some quasi-Fatou component is fast-escaping, then every point is.

Types of quasi-Fatou component

We can describe quasi-Fatou components as invariant $(f(U) \subset U)$, periodic $(f^p(U) \subset U)$, pre-periodic or wandering.

We say that a domain $U \subset \mathbb{R}^d$ is *full* if its complement has no bounded components; otherwise it's *hollow*. (cf. simply/multiply-conn in the plane.)

Points in full periodic quasi-Fatou components cannot be fast-escaping:

Theorem (N., Sixsmith)

If f is trans type qr on \mathbb{R}^d and U is a full component of $\mathcal{QF}(f)$ such that $f^p(U) \subset U$ then, for $x \in U$,

$$\log \log |f^{pn}(x)| = O(n)$$
 as $n \to \infty$.

In particular, $U \cap A(f) = \emptyset$.

The above is analogous to Baker domains in transcendental complex dynamics (except here we necessarily have log log rather than just log.)

Hollow quasi-Fatou components

Baker showed that for trans entire f on \mathbb{C} , all multiply-connected Fatou components are bounded (and hence wandering).

Now let f be trans type qr on \mathbb{R}^d .

Conjecture

All hollow quasi-Fatou components are bounded (and hence wandering).

Theorem (N., Sixsmith)

If the conjecture holds then $J(f) = \partial A(f)$, and $J(f) = J(f^p)$ for $p \in \mathbb{N}$, and J(f) is perfect.

Hollow quasi-Fatou components

Bounded hollow quasi-Fatou components of qr maps behave just like multiply-connected Fatou components in complex dynamics.

Theorem (N., Sixsmith)

Let U_0 be a bounded hollow component of $\mathcal{QF}(f)$. Then U_0 is wandering and

- $U_n := f^n(U_0)$ is a bounded hollow component of $\mathcal{QF}(f)$ for all n;
- U_{n+1} surrounds U_n for all large n;
- $\overline{U_n} \subset A(f);$
- the 'inner' and 'outer' boundaries of U_n are far apart for large n.

Existence of hollow quasi-Fatou components

Theorem (N., Sixsmith)

For each $d \ge 2$, there exists a quasiregular f on \mathbb{R}^d of trans type such that $\mathcal{QF}(f)$ has a hollow component.

In that construction we have a poor grasp on J(f). We have either

- \bullet a sequence of wandering bounded hollow \mathcal{QF} components; or
- \bullet a hollow \mathcal{QF} component that is unbounded.

But we don't know which.

Recent work with Burkart and Fletcher interpolates between power maps of increasing degree to construct a trans type qr map of \mathbb{R}^3 with bounded hollow quasi-Fatou components separated by spheres $\{|x| = r_k\}$ in J(f).

I believe this also gives the first example in dim \geq 3 where the quasi-Fatou set has more than two components. See next talk!