Rigidity for Rotational Dynamics

Willie Rush Lim

Stony Brook University

AMS Sectional Meeting April 2024

Given a degree $d \ge 2$ rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

• $f^*\mu = \mu$ a.e.,

• $supp(\mu) = positive area subset of J(f)$,

• $|\mu(z)| = 1$ on $\operatorname{supp}(\mu)$.

Given a degree $d \ge 2$ rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

•
$$f^*\mu=\mu$$
 a.e.,

- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on supp (μ) .

Conjecture (NILF)

If f is not a Lattés example, the Julia set J(f) supports no invariant line field of f.

Given a degree $d \ge 2$ rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $supp(\mu) = positive area subset of J(f)$,
- $|\mu(z)| = 1$ on supp (μ) .

Conjecture (NILF)

If f is not a Lattés example, the Julia set J(f) supports no invariant line field of f.

Having NILF is a rigidity property: if ϕ is a QC conjugacy between two rational maps f, g,

f has NILF $\implies \bar{\partial}\phi = 0$ a.e. on J(f).

Given a degree $d \ge 2$ rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $supp(\mu) = positive area subset of J(f)$,
- $|\mu(z)| = 1$ on supp (μ) .

Conjecture (NILF)

If f is not a Lattés example, the Julia set J(f) supports no invariant line field of f.

Having NILF is a rigidity property: if ϕ is a QC conjugacy between two rational maps f, g,

$$f$$
 has NILF $\implies \bar{\partial}\phi = 0$ a.e. on $J(f)$.

Also, the conjecture implies...

```
Conjecture (Density of hyperbolicity)
```

Hyperbolic rational maps form a dense open subset of Rat_d.

Consider a finitely generated Kleinian group $\Gamma < \mathsf{PSL}_2\mathbb{C}.$

Theorem (Sullivan '85)

The limit set $\Lambda(\Gamma)$ of Γ supports no invariant line field.

Consider a finitely generated Kleinian group $\Gamma < \mathsf{PSL}_2\mathbb{C}.$

Theorem (Sullivan '85)

The limit set $\Lambda(\Gamma)$ of Γ supports no invariant line field.

Somewhat related results:

Theorem (Sullivan '84, Tukia '84, Bishop-Jones '97)

 $\dim(\Lambda(\Gamma)) < 2$ if and only if Γ is geometrically finite.

Theorem (Agol '04, Calegari-Gabai '06) Either $\Lambda(\Gamma) = \hat{\mathbb{C}}$ or $\Lambda(\Gamma)$ has zero area. Similar results have been established, e.g.:

Theorem (McMullen '00)

If every critical point in J(f) is pre-periodic (geometrically finite), then

either $J(f) = \hat{\mathbb{C}}$ or $\dim(J(f)) < 2$.

Theorem (Przytycki, Urbański '01)

If every critical point in J(f) is non-recurrent, then

either $J(f) = \hat{\mathbb{C}}$ or $\dim(J(f)) < 2$.

Similar results have been established, e.g.:

Theorem (McMullen '00)

If every critical point in J(f) is pre-periodic (geometrically finite), then

either $J(f) = \hat{\mathbb{C}}$ or $\dim(J(f)) < 2$.

Theorem (Przytycki, Urbański '01)

If every critical point in J(f) is non-recurrent, then

either $J(f) = \hat{\mathbb{C}}$ or $\dim(J(f)) < 2$.

Qn: What happens when critical points are recurrent?

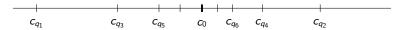
 \Rightarrow a common source of recurrence: rotational dynamics

Rigid rotation

Consider the rigid rotation

$$R_{ heta}:S^1
ightarrow S^1, \quad z\mapsto e^{2\pi i heta}z.$$

The closest returns of the orbit $\{c_i \mathrel{\mathop:}= R^i_ heta(c)\}_{i\geq 0}$ back to any point $c\in S^1$ are:



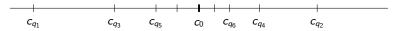
where p_n/q_n are the n^{th} best rational approximations of θ .

Rigid rotation

Consider the rigid rotation

$$R_{ heta}:S^1
ightarrow S^1, \quad z\mapsto e^{2\pi i heta}z.$$

The closest returns of the orbit $\{c_i \mathrel{\mathop:}= R^i_{ heta}(c)\}_{i\geq 0}$ back to any point $c\in S^1$ are:



where p_n/q_n are the n^{th} best rational approximations of θ .

We say that an irrational number $\theta \in (0, 1)$ is of **bounded type** if there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where

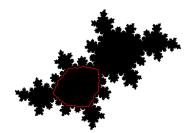
$$heta = rac{1}{a_1 + rac{1}{a_2 + rac{1}{a_3 + \dots}}}.$$

Then,

bounded type
$$\iff$$
 $\log |c_{q_n} - c_0| \asymp -n$

Theorem (GF Zhang '11)

If D is a rotation domain of a rational map with bounded type rotation number, then every component of ∂D is a quasicircle containing a critical point.



 $f(z) = z^2 + c$ where $c \approx -0.3905 - 0.5868i$

$$f(z)=e^{2\pi it}z^2rac{z-4}{1-4z}$$
 where $tpprox 0.61517$

Rotation curves

A rotation curve X of a rational map f is a periodic Jordan curve on which $f^{\rho}|_{X}$ is conjugate to irrational rotation $R_{\theta}(z) = e^{2\pi i \theta} z$.

Rotation curves

A rotation curve X of a rational map f is a periodic Jordan curve on which $f^p|_X$ is conjugate to irrational rotation $R_\theta(z) = e^{2\pi i \theta} z$.

If $rot(f|_X)$ is bounded type and $X \subset J(f)$, then either

(1) X is the boundary of a rotation domain, or

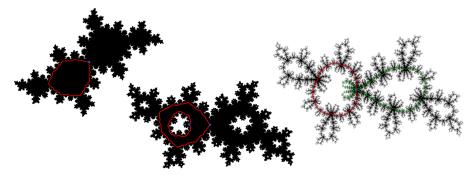
(2) X is not (1) (Herman curve) and contains both "inner" and "outer" critical points.

Rotation curves

A rotation curve X of a rational map f is a periodic Jordan curve on which $f^p|_X$ is conjugate to irrational rotation $R_\theta(z) = e^{2\pi i \theta} z$.

If $rot(f|_X)$ is bounded type and $X \subset J(f)$, then either

- (1) X is the boundary of a rotation domain, or
- (2) X is not (1) (Herman curve) and contains both "inner" and "outer" critical points.



Note: all of the examples above are actually quasicircles too!

A rational map f is J-rotational if it admits bdd type rotation quasicircles X_1, X_2, \ldots, X_k such that

$$P(f) \cap J(f) = \bigcup_{i=1}^{k} X_i \cup \{\text{finite set}\}.$$

Any recurrent critical point is in one of the X_i 's.

A rational map f is J-rotational if it admits bdd type rotation quasicircles X_1, X_2, \ldots, X_k such that

$$P(f) \cap J(f) = \bigcup_{i=1}^{k} X_i \cup \{\text{finite set}\}.$$

Any recurrent critical point is in one of the X_i 's.

Theorem (L. '23)

Consider a J-rotational rational map f.

- J(f) supports no invariant line field.
- **2** If f has no Herman curves, area(J(f)) = 0.
- If f has no Herman curves and {finite set} = \emptyset , then dim(J(f)) < 2.

A rational map f is J-rotational if it admits bdd type rotation quasicircles X_1, X_2, \ldots, X_k such that

$$P(f) \cap J(f) = \bigcup_{i=1}^{k} X_i \cup \{\text{finite set}\}.$$

Any recurrent critical point is in one of the X_i 's.

Theorem (L. '23)

Consider a J-rotational rational map f.

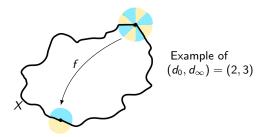
- **(**) J(f) supports no invariant line field.
- **2** If f has no Herman curves, area(J(f)) = 0.
- **③** If f has no Herman curves and {finite set} = \emptyset , then dim(J(f)) < 2.

<u>Question</u>: If $P(f) \cap J(f) = a$ single Herman curve, can J(f) have positive area? The complexity is similar to Feigenbaum Julia sets. critical quasicircle map = $\begin{cases} \text{holomorphic self homeomorphism } f \text{ of a quasicircle } X \\ \text{with a unique critical point on } X \end{cases}$

critical quasicircle map = $\begin{cases} \text{holomorphic self homeomorphism } f \text{ of a quasicircle } X \\ \text{with a unique critical point on } X \end{cases}$

There are three obvious invariants:

- $\theta = rotation number$,
- $d_0 =$ inner criticality of the critical point,
- $d_{\infty} =$ outer criticality of the critical point.



The total local degree of the critical point is $d_0 + d_\infty - 1$.

Rigidity of critical quasicircle maps

Consider two critical quasicircle maps

$$f_1: X_1 \rightarrow X_1$$
 and $f_2: X_2 \rightarrow X_2$

of the same criticalities (d_0, d_∞) and bounded type rotation number θ .

Consider two critical quasicircle maps

 $f_1: X_1 \rightarrow X_1$ and $f_2: X_2 \rightarrow X_2$

of the same criticalities (d_0, d_∞) and bounded type rotation number θ .

One can adapt techniques for critical circle maps (de Faria-de Melo '99) as well as quasicritical circle maps (Avila-Lyubich '22) to prove:

Theorem (L. '23)

There is a QC conjugacy ϕ between f_1 and f_2 on an annular neighborhood of X_1 .

Consider two critical quasicircle maps

 $f_1: X_1 \rightarrow X_1$ and $f_2: X_2 \rightarrow X_2$

of the same criticalities (d_0, d_∞) and bounded type rotation number θ .

One can adapt techniques for critical circle maps (de Faria-de Melo '99) as well as quasicritical circle maps (Avila-Lyubich '22) to prove:

Theorem (L. '23)

There is a QC conjugacy ϕ between f_1 and f_2 on an annular neighborhood of X_1 .

Moreover, due to our NILF Theorem and a deep point argument, we have:

Theorem (L. '23)

The conjugacy ϕ is $C^{1+\alpha}$ on X_1 .

Given a critical quasicircle map $f: X \to X$ with bdd type rotation number θ and criticalities (d_0, d_∞) ,

- dim(X) is universal (depending only on θ , d_0 , d_∞);
- if θ is a quadratic irrational, X is self-similar at the critical point with universal scaling factor;
- *renormalizations* Rⁿf converge exponentially fast to a unique R-invariant horseshoe attractor.

Thank you!