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Invariant Line Field

Given a degree d ≥ 2 rational map f : Ĉ→ Ĉ, an invariant line field of f is a
measurable Beltrami differential µ = µ(z) dz̄

dz on Ĉ where
f ∗µ = µ a.e.,
supp(µ) = positive area subset of J(f ),
|µ(z)| = 1 on supp(µ).

Conjecture (NILF)
If f is not a Lattés example, the Julia set J(f ) supports no invariant line field of f .

Having NILF is a rigidity property: if φ is a QC conjugacy between two rational maps f , g ,

f has NILF =⇒ ∂̄φ = 0 a.e. on J(f ).

Also, the conjecture implies...

Conjecture (Density of hyperbolicity)
Hyperbolic rational maps form a dense open subset of Ratd .
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Historical background 1

Consider a finitely generated Kleinian group Γ < PSL2C.

Theorem (Sullivan ’85)
The limit set Λ(Γ) of Γ supports no invariant line field.

Somewhat related results:

Theorem (Sullivan ’84, Tukia ’84, Bishop-Jones ’97)
dim(Λ(Γ)) < 2 if and only if Γ is geometrically finite.

Theorem (Agol ’04, Calegari-Gabai ’06)

Either Λ(Γ) = Ĉ or Λ(Γ) has zero area.
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Historical background 2

Similar results have been established, e.g.:

Theorem (McMullen ’00)
If every critical point in J(f ) is pre-periodic (geometrically finite), then

either J(f ) = Ĉ or dim(J(f )) < 2.

Theorem (Przytycki, Urbański ’01)
If every critical point in J(f ) is non-recurrent, then

either J(f ) = Ĉ or dim(J(f )) < 2.

Qn: What happens when critical points are recurrent?
⇒ a common source of recurrence: rotational dynamics
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Rigid rotation

Consider the rigid rotation

Rθ : S1 → S1, z 7→ e2πiθz.

The closest returns of the orbit {ci := R i
θ(c)}i≥0 back to any point c ∈ S1 are:

c0cq1 cq2cq3 cq4cq5 cq6

where pn/qn are the nth best rational approximations of θ.

We say that an irrational number θ ∈ (0, 1) is of bounded type if there is some B ∈ N
such that supn an ≤ B where

θ =
1

a1 +
1

a2+
1

a3+...

.

Then,
bounded type ⇐⇒ log |cqn − c0| � −n.
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Rotation domains

Theorem (GF Zhang ’11)
If D is a rotation domain of a rational map with bounded type rotation number,
then every component of ∂D is a quasicircle containing a critical point.

f (z) = z2 + c where c ≈ −0.3905 − 0.5868i
f (z) = e2πitz2 z − 4

1 − 4z
where t ≈ 0.61517
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Rotation curves

A rotation curve X of a rational map f is a periodic Jordan curve on which
f p |X is conjugate to irrational rotation Rθ(z) = e2πiθz.

If rot(f |X ) is bounded type and X ⊂ J(f ), then either
(1) X is the boundary of a rotation domain, or
(2) X is not (1) (Herman curve) and contains both ”inner” and ”outer” critical points.

Note: all of the examples above are actually quasicircles too!
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Rigidity of J-rotational rational maps

A rational map f is J-rotational if it admits bdd type rotation quasicircles X1,X2, . . . ,Xk
such that

P(f ) ∩ J(f ) =
k⋃

i=1

Xi ∪ {finite set}.

Any recurrent critical point is in one of the Xi ’s.

Theorem (L. ’23)
Consider a J-rotational rational map f .

1 J(f ) supports no invariant line field.
2 If f has no Herman curves, area(J(f )) = 0.
3 If f has no Herman curves and {finite set}= ∅, then dim(J(f )) < 2.

Question: If P(f ) ∩ J(f ) = a single Herman curve, can J(f ) have positive area?
The complexity is similar to Feigenbaum Julia sets.
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Beyond the realm of rational maps

critical quasicircle map =

{
holomorphic self homeomorphism f of a quasicircle X
with a unique critical point on X

There are three obvious invariants:
θ = rotation number,
d0 = inner criticality of the critical point,
d∞ = outer criticality of the critical point.

Example of
(d0, d∞) = (2, 3)

X

f

The total local degree of the critical point is d0 + d∞ − 1.
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Rigidity of critical quasicircle maps

Consider two critical quasicircle maps

f1 : X1 → X1 and f2 : X2 → X2

of the same criticalities (d0, d∞) and bounded type rotation number θ.

One can adapt techniques for critical circle maps (de Faria-de Melo ’99) as well as
quasicritical circle maps (Avila-Lyubich ’22) to prove:

Theorem (L. ’23)
There is a QC conjugacy φ between f1 and f2 on an annular neighborhood of X1.

Moreover, due to our NILF Theorem and a deep point argument, we have:

Theorem (L. ’23)
The conjugacy φ is C1+α on X1.
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Consequences of C1+α rigidity

Given a critical quasicircle map f : X → X with bdd type rotation number θ
and criticalities (d0, d∞),

1 dim(X) is universal (depending only on θ, d0, d∞);

2 d0 = d∞ ←→ X is C1 smooth ←→ dim(X) = 1;

3 if θ is a quadratic irrational, X is self-similar at the critical point with universal
scaling factor;

4 renormalizations Rnf converge exponentially fast to a unique R-invariant horseshoe
attractor.
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Thank you!
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