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Quasiregular maps

Let M,N be oriented Riemannian n-manifolds, and let f be a continuous

map in the local Sobolev space W 1,n
loc

(M,N).

The map f is called K -quasiregular (K -QR) for K ≥ 1 if f satis�es

|Df (x)|n ≤ KJf (x)

for almost every x ∈ M, where:

Df : TM → TN is the weak derivative;

|·| is the operator norm with respect to the Riemannian metrics;

Jf is the Jacobian determinant induced by the orientations.

A map is called quasiregular (QR) if it is K -QR for some K ≥ 1.

Homeomorphic quasiregular maps are called quasiconformal.
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Uniformly quasiregular maps

Let M be an oriented Riemannian n-manifold, and let f : M → M be a

quasiregular self-map.

The map f is called uniformly K -quasiregular (K -UQR) for K ≥ 1 if every

iterate f k of f is K -quasiregular.

UQR maps share many properties with holomorphic dynamics:

A UQR map f has a Julia set Jf and a Fatou set Ff .
(Okuyama�Pankka) A UQR map f has an invariant, balanced
probability measure µf supported on Jf .
(Iwaniec�Martin) A UQR map f is 1-UQR with respect to a
Riemannian metric gf on M � but this gf is really non-smooth, one
only has gf ∈ L∞(M,T ∗M ⊗ T ∗M) with no di�erentiability.

Compared to QR, UQR is a far more restrictive condition. It is hard to

come up with examples.
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Motivating question

Question

Which closed (compact and boundaryless), connected Riemann surfaces

admit non-constant non-injective holomorphic self-maps?

S2 admits branching ones.

T2 admits locally injective ones.

All the rest are hyperbolic, which doesn't allow for any.

Question

Which closed, connected, orientable n-manifolds M admit non-constant

non-injective UQR self-maps?

A much more complicated question, that is far from being resolved.
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Existing examples for n ≥ 3

Conformal trap -constructions.

Involve creating a "trap" that is mapped into itself conformally (or
uniformly quasiregularly).
Original example by Iwaniec and Martin.
So far only successful in spaces universally covered by Sn (Sn itself,
projective space, lens spaces, etc.)

Lattès-type maps.

f : M → M given by f ◦ h = h ◦ A, where A : Rn → Rn is a linear
conformal map, and h : Rn → M is a quasiregular map that is strongly
automorphic under a discrete isometric groups action on Rn.
Either M, M \ {x0}, or M \ ({x0, x1}) must be homeomorphic to a
quotient of Rn for such an example to be possible.
Examples hence are most typical on torus-like spaces such as
Sk1 × · · · × Skl , where k1 + · · ·+ kl = n.
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Low dimensions

n = 2: the Riemann surfaces that admit non-constant non-injective

UQR maps are exactly the ones that admit non-constant non-injective

holomorphic self-maps.

n = 3 is the last dimension with a full characterization of which

topological 3-manifolds admit non-constant non-injective UQR

dynamics. This is thanks to Perelman's proof of Thurston's

geometrization conjecture.

The full characterization in 3 dimensions was assembled in the PhD

thesis of Kangaslampi.

From n = 4 onwards, the question is open.
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Restrictions that do not use the "Uniformly" -part

Hyperbolic closed manifolds can also be excluded in higher dimension,

under the following precise theorem.

Theorem (Bridson-Hinkkanen-Martin)

If a closed, connected, oriented Riemannian n-manifold M has a

torsion-free, non-elementary, word-hyperbolic fundamental group, then

every non-constant QR-map f : M → M is a homeomorphism.
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Connection to quasiregular ellipticity

A closed, connected, oriented Riemannian n-manifold M is called

quasiregularly elliptic (QR-elliptic) if there exists a non-constant

quasiregular map h : Rn → M.

The following fact is proven in the thesis of Kangaslampi.

Theorem

If a closed, connected, oriented Riemannian n-manifold admits a

non-constant non-injective uniformly quasiregular self-map, then it is

quasiregularly elliptic.

Thus, it makes sense to say that a manifold is uniformly quasiregularly

elliptic (UQR-elliptic) if it admits a non-constant non-injective uniformly

K -quasiregular self-map.
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Consequence of QR-ellipticity

Theorem (Prywes)

If a closed, connected, oriented Riemannian n-manifold is M QR-elliptic,

then for all k ∈ {0, . . . , n}, its k :th cohomology group satis�es

dimHk(M;R) ≤
(
n

k

)
This improves to

Theorem (Heikkilä-Pankka)

If a closed, connected, oriented Riemannian n-manifold M is QR-elliptic,

then there is an embedding of graded algebras H∗(M;R) ↪→ ∧∗Rn, where

the target is the standard n-dimensional exterior algebra.
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Are QR-elliptic manifolds always UQR-elliptic?

No, they are not.

Theorem (Rickman)

The manifold (S2 × S2)#(S2 × S2) is QR-elliptic.

Theorem (Kangasniemi)

The manifold (S2 × S2)#(S2 × S2) is not UQR-elliptic.

The di�erence is:

Theorem (Kangasniemi)

If a closed, connected, oriented Riemannian n-manifold M is UQR-elliptic,

then the embedding H∗(M;R) ↪→ ∧∗Rn can be selected so that its image

is closed under the standard Cli�ord product of ∧∗Rn.
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Restrictions on degree

Theorem (Kangasniemi-Pankka)

If M is a closed, connected, oriented Riemannian n-manifold and

f : M → M is a non-constant UQR-map, then

(deg f )
k
n
dimHk (M;R) ∈ Z

for all k ∈ {1, . . . , n − 1}.

The above is a clear di�erence between QR and UQR maps. For instance,

if M = Sn−1 × S1 with n ≥ 3,

QR-maps f : M → M can have any positive degree, since the map

(x , e iθ) 7→ (x , emiθ) is QR with K = mn−1.

UQR-maps f : M → M can only have positive degrees of the form

mn,m ∈ Z>0 by the above result.
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Julia sets

Question (Martin�Mayer)

If f : Sn → Sn, n ≥ 3, is a non-constant non-injective UQR map with a

Julia set Jf of positive measure, is f a Lattès-type map?

They manage a special case of this.

Theorem (Martin�Mayer)

If f : Sn → Sn, n ≥ 3, is a non-constant non-injective UQR map with a set

of conical points Λc(f ) of positive measure, then f is a Lattès-type map.

For rational maps in S2, Λc(f ) is large in Jf , in the sense that

µf (Λc(f )) = 1. However, whether this is true for UQR-maps when n ≥ 3 is

open.
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Julia sets

Theorem (Kangasniemi)

If M is a closed, connected, oriented Riemannian n-manifold, and if

H∗(M;R) � H∗(Sn;R), then every non-injective non-constant UQR

self-map on M has a Julia set of positive measure, with µf absolutely

continuous with respect to the Riemannian volume.

On Sn one has multiple examples of UQR-maps that have a Julia set of

zero measure. But by the above result, if one moves to a closed manifold

M with nontrivial cohomology, UQR maps are too strongly restricted for

this to happen.
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Julia sets

Thus, combining the previous result with the question of Martin and

Mayer, we encounter the following open question.

Question

If M is a closed, connected, oriented Riemannian n-manifold, and if

H∗(M;R) � H∗(Sn;R), then is every non-constant non-injective UQR

self-map f : M → M a Lattès map?

Even just the following simpler question is open.

Question

If M is a closed, connected, oriented Riemannian n-manifold, and if

H∗(M;R) � H∗(Sn;R), then does every non-constant non-injective UQR

self-map f : M → M have Jf = M?
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Thank you for your attention.
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