MLC at Feigenbaum points
University of Wisconsin-Milwaukee, AMS Sectional Meeting,

Apr 21, 2024

Logistic maps: $f_{\lambda}(x)=\lambda x(1-x)$

The chaos (sensitive dependence on initial conditions) was discovered by Poincaré in the 1880s (three body problem) but was not in agenda for 70 years.

Logistic maps: $f_{\lambda}(\mathscr{X})=\lambda \mathscr{X}(1-\mathscr{X})$
the first family where chaos was studied and
fully understood
1940s: Ulam-Neumann $\lambda=4$,
1960s: Lorenz, Myrberg, Sharkovsky,
1970s, Milnor-Thurston: Full Combinatorial Theory Misiurewicz, Guckenheimer

No Wandering Intervals Theorem

popularized in the mid-70s by R. May as a discrete model of the logistic equation

$$
\begin{gathered}
f^{\prime}=f(1-f) \\
\text { (has no chaos) }
\end{gathered}
$$

population growth,
Pierre F. Verhulst, 1840s

the mid-late 1970s, Discoveries:

Feigenbaum, parameter universality:

$$
\exists \lim _{n \rightarrow \infty} \frac{\lambda_{n-1}-\lambda_{n-2}}{\lambda_{n}-\lambda_{n-1}}=4.6692 \ldots
$$

it is the same number for the

$$
g_{\mu}(x)=\mu \sin x \quad \text { family }
$$

independently and simultaneously,

 Coullet-Tresser, dynamical universality:Attractor $\left(\mathrm{f}_{\lambda_{+}}\right) \simeq \lim \left(\mathbb{Z} / 2^{n},+\right)$ is a "rotating" Cantor set or a dyadic adding maching (by the No Wandering Intervals Thm)
$\operatorname{HD}\left[\operatorname{Attractor}\left(f_{\lambda_{*}}\right)\right]$ is universal, f.e., $\operatorname{HD}\left[\operatorname{Attr}\left(f_{\lambda_{\star}}\right)\right]=\operatorname{HD}\left[\operatorname{Attr}\left(g_{\mu_{\mu}}\right)\right]$
Lanford, early 1980s, computer-assisted proof
Rigidity, exm : a qc conjugacy h between $f_{\lambda_{\star}}$ and $g_{\mu_{\star}}$ is $\quad C^{1+\alpha}$ conformal on the Attractor :

$$
h(x+\Delta x)=h(x)+h^{\prime}(x) \Delta x=O\left(|\Delta x|^{1+\alpha}\right)
$$

it is similar to $C^{1+\alpha}$-rigidity of circle diffeomorphisms with diophantine rotation numbers, Herman, late 1970s

Sullivan, late-80s + early-90s, a priori bounds, and Teichmüller Theory of the Renormalization (Real Dynamics but with Complex Methods relying on the Douady-Hubbard quadratic-like theory)

Douady, Hubbard, 80s:
\mathcal{M} is connected
has ∞-many copies of itself has rich but understandable combinatorics, ... they put forward
the MLC conjecture

The Mandelbrot set

$$
\begin{gathered}
\mathcal{M}=\left\{c \mid \text { Julia set } J_{c} \text { of } f_{c}(z)=z^{2}+c \text { is connected }\right\} \\
c \notin \mathcal{M}, \quad \text { iff } J_{c} \text { is a Cantor set }
\end{gathered}
$$

The MLC-conjecture: the Mandelbrot set is locally connected

Yoccoz, early 90s MLC holds at non-infinitely renormalizable parameters

i.e, MLC is equivalent to shrinking of small
if $\mathcal{M} \supsetneq \mathcal{M}_{1} \supsetneq \mathcal{M}_{2} \supsetneq \mathcal{M}_{3} \supsetneq \ldots$
then $\bigcap_{n \geq 1} \mathcal{M}_{n}=\left\{c_{*}\right\}$ is a singleton

Douady, Hubbard : \mathcal{M} has infinitely many copies of itself canonically homeomorphic to itself

Canonical homeomorphism:

\exists ! real $c_{\star} \in \mathbb{R}$ s.t. $\mathbf{R}\left(c_{\star}\right)=c_{\star}$ and
$\mathbf{R}\left(c_{\star}+w\right)=\mathbf{R}\left(c_{\star}\right)+\mathbf{R}^{\prime}\left(c_{\star}\right) w+o\left(|w|^{1+\alpha}\right)$

\exists ! real $c_{\star} \in \mathbb{R}$ s.t. $\quad \mathbf{R}\left(c_{\star}\right)=c_{\star}$ and

$$
\mathbf{R}\left(c_{\star}+w\right)=\mathbf{R}\left(c_{\star}\right)+\mathbf{R}^{\prime}\left(c_{\star}\right) w+o\left(|w|^{1+\alpha}\right)
$$

\exists ! real $c_{\star} \in \mathbb{R}$ s.t. $\quad \mathbf{R}\left(c_{\star}\right)=c_{\star}$ and

$$
\mathbf{R}\left(c_{\star}+w\right)=\mathbf{R}\left(c_{\star}\right)+\mathbf{R}^{\prime}\left(c_{\star}\right) w+o\left(|w|^{1+\alpha}\right)
$$

$$
f_{c}^{2}: U \rightarrow V \text { is quadratic-like }
$$

$C^{1+\alpha}$ - parameter universality :
\exists ! real $c_{\star} \in \mathbb{R}$ s.t. $\mathbf{R}\left(c_{\star}\right)=c_{\star}$ and

$$
\mathbf{R}\left(c_{\star}+w\right)=\mathbf{R}\left(c_{\star}\right)+\mathbf{R}^{\prime}\left(c_{\star}\right) w+o\left(|w|^{1+\alpha}\right)
$$

Sullivan, 80s -- early 90s a priori bounds, renorm fixed point

McMullen, mid 90s
dynamical universality
Lyubich, late 90s parameter universality
same statements hold for any other small copy on the real line

MLC remained open at that time for the period-doubling Feigenbaum, parameter
(and for similar parameters)

A lot has been achieved in the 1990s, f.e.:

1) a good understanding of quadratic-like renormalization and respective universalities Sullivan, McMullen, Lyubich
2) basics of the Siegel and Parabolic renormalizations

3) full understanding of the real polnomials $z^{2}+c, c \in \mathbb{R}$ - the logistic family density of hyperbolicity for real pol-Is a.e. real pol-I is either regular or stochastic Lyubich; Graczyk and Swiatek: Lyubich (probability approach inspired by Kolmogorov)

+ various generalizations to higher degree real polynomials...
Major remaining challenges towards the MLC
left from the 1990s:
a priori bounds
it became apparent that a priori bounds
(precompactness of the first return maps) is a main step for the MLC
non-JLC parameters
Local connectivity of the Julia Set (JLC) fails for some parameters; understanding non-JLC phenomenon is essential for the MLC

late 2000s, two new theories emerged based on new principals:

Kahn-Lyubich, Near-Degenerate regime

 a machinery to produce a priori bounds could not handle non-JLC parameters at the timesort of a "topological dynamics" but with non-crossing constrains (more later)

Inou-Shishikura

near-Parabolic Renormalization
(responsible for non-JLC)
perturbative theory allowing to deals with most delicate non-JLC parameters instead of the original map, one iterates the renormalization change of variables
both theories had multiple applications but were in many ways "incompatible" (different languages, different tools, different objects/regimes...)
It took some time to find a way to combine the ideas of the theories:
DD, Lyubich 2022: Uniform a priori bounds for neutral renormalization
this unifies near-Siegel and near-Parabolic renorm theories
key tool: almost-invariant pseudo-Siegel disks Siegel renorm theory is "redeveloped" for pseudo-Siegel disks in the near-degenerate regime allowing to "hide" non-JLC phenomenon

Inou-Shishikura sectorial bounds are then obtained by analyzing the inner geometry of pseudo-Siegel disks
one of the new ideas in DL22 is that degenerations can be "eaccounted" on deeper renorm
this motivated:
(on a technical level DL22
and DL23 are quite different)
DD, Lyubich 2023: MLC holds at Feigenbaum points

DD, Lyubich 2023: MLC holds at Feigenbaum points

let $\mathbf{R}_{i}: \mathcal{M}_{i} \rightarrow \mathcal{M}$ be the canonical homeomorphism from a small copy \mathcal{M}_{i} to the Mandelbrot set \mathcal{M}
then $\bigcap_{n \geq 0} \mathbf{R}^{-n}(\mathcal{M})=\left\{c_{i}\right\}$ is a singleton and the MLC holds at c_{i} c_{i} is called a Feigenbaum point

Kahn, 2006 : true for the primitive \mathcal{M}_{i}

open sets in \mathbb{C} degenerate along wide rectangles

Kahn:
near-degenerate regime for renormalization theory of quadratic polynomials

DD, Lyubich 2023, simplified: (the Feigenbaum combinatorics, for illustration)
if Kahn's argument fails, then we obtain an invariant rectangle I that efficiently overflows its lift \widetilde{I}.

The "difference" $I \backslash \widetilde{I}$ consists of two much wider rectangles that hit preperiodic Julia sets of next level.
I. e., if a degeneration emerges, then it starts to increase with super exponential speed.

It is a contradiction to the Teichmüller contraction.

