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It’s a particularly special privilege to speak here today!

My parents, Dave and Hayley, University of Wisconsin-Milwaukee class of
1988 and 1987!



Goal: Outline a new technique that interpolates between quasiregular
power mappings of different degrees, and convince you that it can be used
to construct quasiregular mappings with interesting dynamics!

Outline:

1. Motivation: Two dimensional version of this result.

2. Sketching the three dimensional version

3. Things we know we can do

4. Things we think we can do.



Model Question: Find a function f : C → C with the following
properties

1. f (z) = z on B(0, 1)

2. f (z) = z2 on C \B(0, r) some r > 1.

3. f : C → C is quasiregular.



Step 1: Add an antenna to the white vertex.

f1(z) = z f2(z) = z2

White dots map to negative number, black dots map to positive number.



Step 2: Change coordinates using the logarithm and cut open to a rect-
angle. We’ll glue it back together soon.



Step 3: Triangulate, and unzip!

Mapping is piecewise linear on each triangle. What is the problem with
this?



Step 3: Triangulate, and unzip!

The map cannot possibly be continuous over the antenna!



Step 4: We’ll fix it later: Go back and apply f2(z) = z2.

z 7→ z2

What happened to the stick man?



Step 5: Interpolate identity and circle collapse to glue stick man together.

z 7→ β(z)

We call this map β. We’re done!



Summary: If we do the antenna correction, we get a nice map that
interpolates between f1(z) = z and f2(z) = z2.
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We can perform a similar idea to transition from z4 to z8.

z4

z8

z 7→ Φ(z)8 z 7→ β(z)

One just adds more antenna, and follows a similar line of reasoning as
before.



Interpolation at different radii if coefficients are chosen correctly

z 7→ r−1z

z 7→ cr4

cz4

c′z8

c′ = cr−4

z 7→ h(z)

Upshot: Therefore we can apply this interpolation many times!



We can interpolate between larger degrees too.

z 7→ z4

z 7→ z16



What Changes? The triangulation part is a bit more complex

As the ratio of the degrees gets large, this triangulation gets very distorted.



What were the key ingredients?

1. Monomials zn on C
2. Adding antenna to annuli

3. log change of coordinates to cylinder

4. Triangulation

5. “Unfolding” piecewise linear map.

6. A correction map that interpolates between the identity and the Joukowski
transformation.



What were the key ingredients?

1. Monomials zn on C – Quasiregular Power Mappings!

2. Adding antenna to annuli – Adding 2D Flaps to Spheres

3. log change of coordinates to cylinder – The Zorich Map!

4. Triangulation – Works perfectly well in higher dimensions

5. Carefully “unfolding” piecewise linear map – Again, works per-
fectly well in higher dimensions

6. A correction map that interpolates between the identity and the Joukowski
transformation – The “Burger” map



Zorich Map - Key Features

1.Z : [0, 1]× R → R3 \ {0}
2. Subsquares [0, 1]× {r} get mapped to hemispheres of radius exp(r).

3. Can be extended by reflection and periodicity.

4. Zorich Mappings are used to define analogies to power mappings in the
complex plane. We use the formula Pd(x) = Z(dZ−1(x)).



Model Question: Find a function f : R3 → R3 such that

1. f (z) = P1(z) on B(0, 1)

2. f (z) = P3(z) on R3 \B(0, r) some r > 1.

3. f : R3 → R3 is quasiregular.



Step 1: Add flaps to the sphere,

The green region is rectangular flap.



Step 2: Change Coordinates using The Zorich Mapping to do the
unfolding step.



Step 3: Triangulate, and do some origami/unfolding.

One of 8 prisms where we define the unfolding.



Step 3: Triangulate, and do some origami/unfolding.

The result in one square



Step 4: We’ll fix continuity later. In this rectangular prism, we can now
complete the process of applying the power map P3(z) = Z(3P−1(z))

After unfolding, the checkerboards align and we can apply x 7→ 3x. Then
we can switch back to regular coordinates via the Zorich map.



Step 5: Interpolate identity on a “burger” and collapse the sphere to fix
continuity issues. This mapping is called β and is 32-quasiconformal.

The domain is the union of the two balls; the sphere of radius one centered
at the origin is removed. The sphere is collapsed, fixing the continuity issue.



Just as before, in the aggregate, we get the desired model mapping. We can
iterate this construction, creating quasiregular functions of transcendental
type.

Applications: The maximum modulus of a function is given by

M(r, f ) = max
|x|=r

|f (x)|

The growth rate is

lim sup
r→∞

log logM(r, f )

log r

Theorem (B, Fletcher, Nicks): Using this construction above, there
exists quasiregular mappings with arbitrarily fast or arbitrarily slow growth.



Theorem (B, Fletcher, Nicks): There exists a quasiregular mapping
f : R3 → R3 whose outermost and innermost quasi-Fatou components are
round spheres. The quasi-Fatou components are hollow and wandering.

I believe this is the first such mapping where there are connected compo-
nents of the boundary of the quasi-Fatou set that have dim(2).



Question: What is the dimension of the Julia set of the above mapping?
Might it also be 2?

We believe this is the case, but the details present challenges.

1. The quasi-Fatou components above have infinitely many bounded com-
plementary components.

2. The insides of those components have infinitely many bounded comple-
mentary components

3. ..... and it continues indefinitely

4. In dimensions bigger than 2, one can use a so called conformal elevator
to control the distortion on these components. We need to judiciously
use clever interpolations to control the distortion. This is technical, but
feasible.



Thank You! Any Questions?


