Dynamics of the Composition of Quadratic Maps with Functions of Constant Complex Dilatation

by Mark Broderius

We will generalize the functions P_{c} defined by $P_{c}(z)=z^{2}+c$ by applying transformations by a stretch and a couple of rotations.

Define S_{K} by $S_{K}(x+i y)=K x+i y$. This applies a horizontal stretch by a factor of K.

Conjugating S_{K} by the rotation function $r_{\theta}(z)=e^{i \theta} z$ stretches by K in the direction of θ instead.

This results in the function $h_{K, \theta}$ defined by $h_{K, \theta}(z)=r_{\theta} \circ S_{K} \circ r_{-\theta}(z)$.

Define $H_{K, \theta, c}$ by $H_{K, \theta, c}(z)=\left[h_{K, \theta}(z)\right]^{2}+c$. This function is quasiregular.

Note that $H_{1, \theta, c}(z)=P_{c}(z)=z^{2}+c$.
For any fixed point z_{0} of $H_{K, \theta, c}(z)$, we can determine the local behavior of $H_{K, \theta, c}$ around z_{0} by using a Jacobian matrix and classifying its eigenvalues λ_{1} and λ_{2}.

This is the matrix.

$$
\left[\begin{array}{ll}
\frac{\partial\left(\Re\left(H_{K, \theta, c}\left(z_{0}\right)\right)\right)}{\partial x} & \frac{\partial\left(\Re\left(H_{K, \theta, c}\left(z_{0}\right)\right)\right)}{\partial y} \\
\frac{\partial\left(\Re\left(H_{K, \theta, c}\left(z_{0}\right)\right)\right)}{\partial x} & \frac{\partial\left(\Im\left(H_{K, \theta, c}\left(z_{0}\right)\right)\right)}{\partial y}
\end{array}\right]
$$

1. If $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$, then z_{0} is an attracting fixed point.
2. If $\left|\lambda_{1}\right|>1$ and $\left|\lambda_{2}\right|>1$, then z_{0} is a repelling fixed point.
3. If $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|>1$, then z_{0} is a saddle fixed point.
$I\left(H_{K, \theta, c}\right)=\left\{z \in \mathbb{C}: \lim _{n \rightarrow \infty} H_{K, \theta, c}^{n}(z)=\infty\right\}$ denotes the escaping set of $H_{K, \theta, c}$.
$B O\left(H_{K, \theta, c}\right)$
$=\left\{z \in \mathbb{C}:\left\{\left|H_{K, \theta, c}^{n}(z)\right|: n \in \mathbb{N}\right\}\right.$ is bounded $\}$ denotes the bounded orbit set of $H_{K, \theta, c}$.

These two sets are complements in \mathbb{C}. (There are no bunjee sets in this setting.)

The Mandelbrot set \mathcal{M} consists of the values c such that $0 \in B O\left(P_{c}\right)$, where $P_{c}(z)=z^{2}+c$.

If $c \in \mathcal{M}$, then $B O\left(P_{c}\right)$ is connected. If
$c \notin \mathcal{M}$, then $B O\left(P_{c}\right)$ is totally disconnected.
If $c \notin \mathcal{M}$, then P_{c} cannot have an attracting fixed point since any attracting fixed point necessarily has a basin of attraction.

We can define an analog of the standard Mandelbrot set \mathcal{M} for any fixed K and θ.

Let $\mathcal{M}_{K, \theta}=\left\{c \in \mathbb{C}: 0 \in B O\left(H_{K, \theta, c}\right)\right\}$.
This set can equivalently be characterized as the set of c values such that $\partial I\left(H_{K, \theta, c}\right)$ is connected.

If $c \notin \mathcal{M}_{K, \theta}$, then $B O\left(H_{K, \theta, c}\right)$ has uncountably many components.

However, we may NOT necessarily conclude that $B O\left(H_{K, \theta, c}\right)$ is totally disconnected.

Figure: The Set $\mathcal{M}_{1.25,0.25}$

Figure: Attracting Fixed Point of $H_{0.5,0,-1.5-0.5 i}$

Figure: Saddle Fixed Point of $H_{5,0,-0.1}$

There is an analog of Böttcher's theorem which implies that there is a quasiregular map $\psi_{K, \theta, c}$ that conjugates $H_{K, \theta, c}$ to $H_{K, \theta, 0}$ in a neighborhood of infinity.(Fletcher and Fryer)

That is, $\psi_{K, \theta, c} \circ H_{K, \theta, c} \circ \psi_{K, \theta, c}^{-1}(z)=H_{K, \theta, 0}(z)$.

This is helpful because $H_{K, \theta, 0}$ is star-like about the origin.

We can therefore define a function $\rho_{K, \theta}$ on $[0,2 \pi)$ by setting $\rho_{K, \theta}(\phi)$ equal to the unique element on $\partial I\left(H_{K, \theta, 0}\right)$ in the direction of ϕ.

Figure: Picture for $H_{2, \frac{\pi}{2}, 0}$

We now define a function $\tau_{K, \theta, 0}$ from \mathbb{C} to \mathbb{R} by $\tau_{K, \theta, 0}\left(r e^{i \phi}\right)=\frac{r}{\left|\rho_{K, \theta}(\phi)\right|}$.

Notably, $\tau_{K, \theta, 0}$ sends every point on $\partial I\left(H_{K, \theta, 0}\right)$ to 1 .

Also, if s is real, $\tau_{K, \theta, 0}(s z)=s \tau_{K, \theta, 0}(z)$.

In a neighborhood of infinity, we can define a $\operatorname{map} \tau_{K, \theta, c}$ by $\tau_{K, \theta, c}(z)=\tau_{K, \theta, 0} \circ \psi_{K, \theta, c}(z)$.
Using this definition, we can derive the equation

$$
\tau_{K, \theta, c}\left(H_{K, \theta, c}(z)\right)=\left[\tau_{K, \theta, c}(z)\right]^{2}
$$

In other words, $\tau_{K, \theta, c}$ conjugates $H_{K, \theta, c}$ to the map $z \rightarrow z^{2}$. We can therefore continuously extend $\tau_{K, \theta, c}$ to $I\left(H_{K, \theta, c}\right)$ by setting $\tau_{K, \theta, c}(z)=\sqrt{\tau_{K, \theta, c}\left(H_{K, \theta, c}(z)\right)}$.

Now, let $G_{K, \theta, c}=\log \circ \tau_{K, \theta, c}$.
This allows us to simplify the result of the previous slide to

$$
G_{K, \theta, c}\left(H_{K, \theta, c}(z)\right)=2 G_{K, \theta, c}(z)
$$

It immediately follows that

$$
G_{K, \theta, c}\left(H_{K, \theta, c}^{n}(z)\right)=2^{n} G_{K, \theta, c}(z)
$$

Define $U_{K, \theta, c}(t)=\left\{z \in \mathbb{C}: G_{K, \theta, c}(z)>t\right\}$.
Since $\tau_{K, \theta, c}$ is continuous, $U_{K, \theta, c}(t)$ is open.

If $s<t$, then $U_{K, \theta, c}(t)$ is contained in the interior of $U_{K, \theta, c}(s)$.

For sufficiently large $t, U_{K, \theta, c}(t) \cup\{\infty\}$ is a simply connected subset of \mathbb{C}_{∞}.

We have that $U_{K, \theta, c}\left(2^{n} t\right)=H_{K, \theta, c}^{n}\left(U_{K, \theta, c}(t)\right)$.

The Riemann-Hurwitz formula applies to quasireguler mappings of degree d. (Fletcher and Goodman)

The branch points of $H_{K, \theta, c}$ are 0 and ∞.
The set $\mathbb{C} \backslash U_{K, \theta, c}(t)$ consists of 2^{m}
components, where m is some non-negative integer. It is connected iff $t \geq G_{K, \theta, c}(0)$.

Theorem: If $H_{K, \theta, c}^{n}$ has at least $2^{n}+1$ fixed points, then $\partial I\left(H_{K, \theta, c}\right)$ is not totally disconnected.

Let's get an idea of why this works.

If $0 \in I\left(H_{K, \theta, c}\right)$, set $t_{0}=G_{K, \theta, c}(0)>0$.
Choose $t_{1} \in\left(t_{0}, 2 t_{0}\right)$.
Then $\mathbb{C} \backslash U_{K, \theta, c}\left(t_{1}\right)$ has one component, while $\mathbb{C} \backslash U_{K, \theta, c}\left(\frac{t_{1}}{2^{n}}\right)$ has 2^{n} components.

Note that $U_{K, \theta, c}\left(\frac{t_{1}}{2^{n}}\right)=H_{K, \theta, c}^{-n}\left(U_{K, \theta, c}\left(t_{1}\right)\right)$.
Note that $I\left(H_{K, \theta, c}\right)=\bigcup_{j=1}^{\infty} H_{K, \theta, c}^{-j}\left(U_{K, \theta, c}\left(t_{1}\right)\right)$.

There are fixed points z_{1} and z_{2} in one of these components, which correspond to an inverse branch f of $H_{K, \theta, c}$ from $\mathbb{C} \backslash U_{K, \theta, c}\left(t_{1}\right)$ to $\mathbb{C} \backslash U_{K, \theta, c}\left(\frac{t_{1}}{2^{n}}\right)$.

Both z_{1} and z_{2} must be stuck in $f^{m}\left(\mathbb{C} \backslash U_{K, \theta, c}\left(t_{1}\right)\right)$ for all $m \in \mathbb{N}$.

The condition of the previous theorem can be met in cases where $c \notin \mathcal{M}_{K, \theta}$.

For example if $K>4$ and $c \in\left(\frac{1}{2 K}-\frac{1}{4},-\frac{2}{K^{2}}\right)$, then $H_{K, 0, c}$ has 4 fixed points and $c \notin \mathcal{M}_{K, \theta}$.

