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Spin structures and spin manifolds

We begin with the notion of a spin structure on a general oriented vector bundle. Recall that, if
E → B is a rank n vector bundle, then it is determined by its transition functions gij mapping into
the general linear group GL(n,R). If we further know that E is equipped with a continuous choice
of inner product on its fibers, we may take our transition functions to map into the orthogonal
group O(n). This is called a reduction of the structure group. We can reduce the group further
to SO(n) assuming orientability of E. For our oriented vector bundle, there is an associated prin-
cipal SO(n)-bundle over B, the bundle of frames of E, which we denote by Pso(E). Each fiber of
this associated bundle is the set of orthonormal bases for a fiber of E. Note that as SO(n) acts
freely and transitively on frames, we may identify each fiber (although not canonically) with SO(n).

As π1(SO(n)) = Z/2 for n ≥ 3, there is a simply connected 2-fold covering of SO(n), known
as Spin(n). For n = 2, we take Spin(n) to be the circle, double covering itself. As coverings of Lie
groups are Lie groups, Spin(n) itself is a Lie group. If we can lift the structure group to Spin(n),
then we say that our oriented bundle E is spinnable.

Definition. For a spinnable vector bundle E → B, a spin structure Pspin(E) → B is a principal
Spin(n)-bundle that nontrivially and equivariantly double covers Pso(E) on each fiber, and such that
the following diagram commutes:

Pspin(E) Pso(E)

B

where the horizontal map is the equivariant nontrivial double cover, and the slanted maps are the
bundle projections.

There is some subtlety regarding the equivalence of spin structures. It is not enough that they are
principal bundle isomorphic, i.e., that there exists a map on the total spaces that commutes with
the action of the bundle and covers the identity over B. Such an isomorphism should also cover the
identity over Pso(E) (so that the following diagram commutes):

Pspin(E) P ′spin(E)

Pso(E)

B

'

where the horizontal map is a principal Spin(n)-bundle isomorphism (it is Spin(n)-equivariant) and
the slanted double covering maps are also equivariant.

Example. A word of caution regarding the above subtlety: two spin structures may be equiva-
lent as bundles, but not equivalent as spin structures. Consider spin structures over the circle S1.
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We will see later that spin structures are classified up to equivalence by H1 with Z/2 coefficients,
so there are two distinct spin structures over the circle. However, any principal G-bundle over the
circle with G connected is bundle isomorphic to the trivial one, since such bundles are classified
up to bundle isomorphism by homotopy classes of maps [S1 → BG] = π1BG = π0G = 0. To be
equivalent as spin structures imposes additional requirements on the diagram, as seen above.

A reduction/lift of the structure group for vector bundles can be formulated in terms of lifts of
classifying maps to the appropriate classifying spaces, as per classical bundle homotopy theory.

Proposition. E → B is spinnable iff there is a lift of the classifying map B → BSO(n) to a map
B → BSpin(n):

BSpin(n)

B BSO(n)

Thus, the only obstruction to E being spinnable is the second Stiefel-Whitney class w2(E).

The above remark follows from the fact that the fiber on the right hand side is K(Z/2, 1) = RP∞ so
the only obstruction to extending a section is in H2(BSO(n), π1(RP∞)) = H2(BSO(n),Z/2) = Z/2,
which is the universal second Stiefel-Whitney class. Note that the equivalence of spin structures
can be formulated in terms of classifying maps as two lifts covering the same map being vertically
homotopic (i.e., for each b ∈ B we have Hb(t) in the fiber over the image of b for all t). As w2 is the
primary obstruction to trivializing the bundle E over the 2-skeleton of B, we note that the geometric
interpretation of a bundle being spinnable is equivalent to it being trivial over the 2-skeleton. As
a Cech Z/2-cocycle, w2 determines whether a consistent choice of lift for the transition maps to
Spin(n) can be made globally.

Lemma. An oriented vector bundle E → B of rank n ≥ 3 is spinnable iff for every continuous map
f : Σ→ B from a surface Σ we have that f∗E is trivial.

Proof. w2(E) = 0 iff f∗w2(E) = w2(f∗E) = 0 for all f : Σ→ B, since we have

〈w2(f∗E), [Σ]〉 = 〈f∗w2(E), [Σ]〉 = 〈w2(E), f∗[Σ]〉

and H2(B,Z/2) is generated by all such f∗[Σ] elements. Note the above does not use the rank or
orientability of our bundle. However, a rank n ≥ 3 oriented vector bundle over a surface is trivial iff
w2 = 0 since, being oriented, w2 is the primary obstruction to finding a section from the 2-skeleton
to the rank n ≥ 3 oriented frame bundle.

Thus the geometric picture for a bundle being spinnable is that it is trivial over the 2-skeleton
of your base. Recalling some obstruction theory, we know that the obstruction to uniqueness up
to homotopy of a lift lies in H1(B,Z/2). Here we must be careful as we want to distinguish two
lifts only if they fail to be vertically homotopic. However it suffices to simply consider the entire
cohomology group, as it turns out the equivalence classes of spin structures for a given oriented
bundle is a H1(B,Z/2)-torsor:

Proposition. If E → B is spinnable, then the group H1(B,Z/2) acts freely and transitively on the
set of equivalence classes of spin structures of E over a fixed principal SO(n)-bundle.
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Proof. We present two different proofs. We can first identify H1(B,Z/2) with Ȟ1(B,Z/2), where 1-
cocycles αij : Ui ∩Uj → Z/2 are defined on a cover of local trivializations for a given spin structure
ξ with transition functions gij : Ui ∩ Uj → Spin(n). Given a 1-cocycle α and a spin structure
determined by functions gij , we can define new transition functions hij on Ui ∩ Uj that determine
an inequivalent spin structure (but over the same principal SO(n)-bundle) by setting

hij =

{
gij if αij = 0

−gij if αij = 1

where −1 denotes pointwise multiplication by the nontrivial element in Spin(n) over the fiber of
the identity. Freeness follows immediately, while transitivity follows from the fact that both spin
structures are double covers of the same SO(n)-bundle, so that any such two differ by multiplication
by −1 in the fiber over appropriate trivializations.

Alternatively, we can return to our lifting diagram above. We have that the classifying space
functor B takes group objects to group objects; thus BZ/2 is an H-space. Then we have that BZ/2
acts on the fibration on the right freely and transitively fiberwise, up to homotopy. Thus, any two
lifts to BSpin(n) of the same map to BSO(n) differ by an element in BZ/2 pointwise; this defines
a map B → BZ/2. But such maps are in correspondence with H1(B,Z/2).

Thus a spin structure can be thought of as a choice of homotopy class of trivialization on the
1-skeleton. We say that an orientable riemannian manifold is spinnable if its tangent bundle is
spinnable. A spin manifold is a spinnable manifold equipped with a spin structure on its tangent
bundle. As we’ve seen, an orientable manifold is spinnable iff its second Stiefel-Whitney class van-
ishes. This gives us a large plethora of examples of manifolds that are spinnable and not spinnable.

Example. Every parallelizable manifold is clearly spinnable (e.g., Lie groups, compact orientable
3-manifolds, Euclidean space, etc.) In fact, every stably parallelizable manifold is spinnable (e.g.,
spheres, orientable surfaces, preimages of regular values of smooth maps from Rn+k → Rn). Any
2-connected manifold is spinnable (e.g., frame manifolds).

Example. Recall that the tangent bundle of RPn is isomorphic to Hom(γ1
n, γ
⊥) where γ1

n denotes
the tautological line bundle and γ⊥ its dual line bundle. From this isomorphism, we obtain that
that the total Stiefel-Whitney class of RPn is w(RPn) = (1+a)n+1 where a is the degree 1 generator
for H∗(RPn,Z/2) ' Z/2[a]/(an+1). Since we require both w1 and w2 to vanish, this forces n to be

odd and n(n+1)
2 to be even. Thus RPn is spinnable iff n ≡ 3 mod 4.

Moreover, we have that the total Chern class of CPn is c(CPn) = (1 + a)n+1 where a is now the
degree 2 generator of the cohomology ring, so that CPn is spinnable iff n odd, since w2 ≡ c1 mod 2.
Finally, HPn is spinnable for all n as it is built from a 0-cell, a 4-cell, an 8-cell, etc., so that it has
no first or second cohomology.

Example. Consider the hypersurface X in CP3 cut out by a degree 4 homogeneous polynomial
i.e., the K3 surface. By splitting principle, we have that c1(E) = c1(∧topE) so c1(TX) = −c1(KX)
where KX denotes the canonical bundle, which is trivial for K3 surfaces. Thus X has c1 = 0 and is
spinnable. More generally, for a degree d hypersurface X in CPn we have the adjunction formula
KX⊗νX∗ = KCPn |X so that c1(X) = (n+1−d)a for a the generator, soX is spinnable iff n−d is odd.

Note that as the Stiefel-Whitney classes are homotopy invariants by Wu’s formula, being spinnable
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is also a homotopy invariant. Assuming that our manifold M has H2(M,Z) generated by maps of
compact orientable surfaces (such as when M is simply connected), we have the analogous geometric
statement for a manifold being spinnable as follows.

Theorem. Let M be an oriented n-manifold whose second homology is generated by maps of compact
orientable surfaces, with n ≥ 5. Then, M is spinnable iff every compact orientable surface embedded
in M has trivial normal bundle. If n = 4, then M is spinnable iff every compact orientable surface
embedded in M has even Euler class on its normal bundle.

Proof. For n ≥ 5, by Whitney embedding, we can homotope a given map of a compact orientable
surface so that the surface is embedded in M . For n = 4, we can homotope the map to a self-
transversal immersion. At each point of intersection, we can remove a small disk and attach a handle
(as in surgery); the resulting manifold will be embedded and homologous to the original immersed
one. Thus all second homology classes can be represented by embeddings of compact orientable
surfaces. Then, we have that w2(TM) = 0 iff f∗w2(TM) = 0 for all embeddings f : Σ → M . But
for an embedding, we have that f∗TM = TM |Σ = TΣ⊕νΣ such that w2(f∗TM) = w2(TΣ⊕νΣ) =
w2(TΣ) + w1(TΣ)w1(νΣ) + w2(νΣ). All terms but w2(νΣ) vanish since Σ is stably parallelizable;
the remaining term vanishes iff νΣ is trivial, again since rank νΣ ≥ 3. The same equation shows
that if n = 4, then the last term vanishes iff e(νΣ) is even, since the Euler class mod 2 is the top
Stiefel-Whitney class.

Corollary. If M simply connected of dimension ≥ 5, then M is spinnable iff every embedded 2-
sphere has trivial normal bundle.

Proof. Apply Hurewicz to obtain that H2(M,Z) is represented by embeddings of 2-spheres.

Corollary. If M compact, simply-connected 4-manifold, then M is spinnable iff 〈y ∪ y, [M ]〉 ≡ 0
mod 2 for every y ∈ H2(M,Z).

Proof. Every y ∈ H2(M,Z) uniquely determines a map (up to homotopy) f : M → K(Z, 2) = CP∞.
We can cellularly deform the map so that we have a map f : M → CP3. We can again homotope
so that the map becomes transverse to CP2 ⊂ CP3 and take its preimage of CP2 to obtain a surface
Σ ⊂ M . As y = f∗a for a the degree 2 generator in CP3, we have that its Poincare dual is the
unique 2-cycle such that its intersection count with other 2-cycles is how y acts on other 2-cycles.
But y acts on 2-cycles σ by counting intersections of CP2 with f∗σ, by definition of pullback and as
a Poincare dual to CP2. Pulling back the intersection sets, we see Σ is Poincare dual to y. Moreover
〈y ∪ y, [M ]〉 is the self-intersection number of Σ with itself, which is also equal to the Euler class of
its normal bundle.

A recurring theme for topological results in spin geometry is that the spin condition on a man-
ifold allows for more subtle and refined invariants, while also imposing a certain degree of rigidity
on underlying structure; indeed, many of these invariants turn out to be either integers, or must
satisfy some divisibility condition or another. For example, we have:

Theorem. (Rokhlin) The signature of a smooth compact spin 4-manifold is divisible by 16.

The above follows from a lengthy discussion on the Â-genus and the fact that the signature of a
4-manifold is always 8 times the Â-genus, which, for a compact spin manifold of dimension 4 mod
8, is an even integer. The condition of spinnability, a homotopy condition, also surprisingly imposes
restrictions on when a manifold can admit certain types of metrics (such as of positive scalar cur-
vature).
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We turn our attention to the spin bordism groups. It is not so simple as simply cobordism with
spin manifolds. First we need the right notion of a spin structure-preserving diffeomorphism. Given
an orientation-preserving diffeomorphism f : M → M between two spin manifolds, there is an
induced diffeomorphism df : Pgl+(M) → Pgl+(M) on the bundle of oriented tangent frames, given
by exactly the differential. This map is fiber-preserving and thus induces a permutation of the
possible spin structures on your spin manifold (since spin structures are exactly double coverings of
the bundle of oriented tangent frames). If the given spin structure remains fixed, then f is a spin
structure-preserving diffeomorphism.

Now note that if we have vector bundles E ⊕ E′ = E′′, then by Whitney sum, any two being
spinnable implies the third is spinnable (just as any two being orientable implies the third is ori-
entable). The spin structure on the third is also canonically determined by the other two. Thus, any
submanifold of a spin manifold with a spin structure on its normal bundle is then canonically a spin
manifold itself. This implies if a spin manifold M has boundary ∂M , its boundary is automatically
spin. Moreover, we can concretely realize the spin structure on the boundary as follows: there is an
embedding Pso(∂M) ⊂ Pso(M) by taking a tangent frame on ∂M and completing it to a tangent
frame on M by adding an inward-pointing normal vector. The spin structure on M , as a double
covering of Pso(M), can then be restricted to be a double covering of Pso(∂M), i.e., a spin structure
on ∂M .

We say that two compact spin n-manifolds M , M ′ are spin bordant if there exists an (n+1)-manifold
W who is spin, such that ∂W is diffeomorphic to M

∐
M ′ with respect to a spin structure-preserving

map, where the orientation and spin structure on ∂W is the one induced from W as above. A com-
pact spin manifold is spin bordant to zero if it is spin bordant to a boundary. Let Ωspin

n denote
the free abelian group generated by the set of equivalence classes of compact connected spin n-
manifolds, modulo the subgroup generated by [X1] + ...+ [Xk] where X1

∐
...
∐
Xk is spin bordant

to zero and where equivalence means up to spin structure-preserving diffeomorphism. This is the
n-dimensional spin bordism group. Again from the Whitney sum, we know that the product of two
spin manifolds is again spin. Moreover, the product of spin manifolds has a uniquely determined
spin structure, as is true for bundles. This makes Ωspin

∗ =
⊕∞

n=0 Ωspin
n into a graded ring, called

the spin bordism ring. The equivalence class (and therefore the cobordism class) of a spin manifold
here is independent of the choice of metric.

Note that surgery may affect the property of being spin. However, there are certain surgeries
that allow one to preserve the property of being spin, so long as one is careful. For example, given
two spin n-manifolds, we can take their connect sum (an S0 ×Dn type surgery) and obtain a con-
nected spin manifold, so that every spin bordism class is representable by a connected manifold.
For n ≥ 3 (as we need to be less than half the dimension and, for n = 3, as every compact oriented
3-manifold is surgically equivalent to S3), we can similarly apply surgery to kill π1 and find simply
connected representatives. For n = 5, we can kill π1 and π2 (as there are no obstructions to surgery
in this dimension) so that by Poincare duality, every spin 5-manifold is spin bordant to the disk;
that is, Ωspin

5 = 0.
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Example. We will compute Ωspin
1 . The only principal SO(1)-bundle over the circle S1 is itself,

identified as a product with a point. However, we have two distinct spin structures: one is a con-
nected double cover of the circle, and the other is the trivial double cover. If we realize S1 as the
boundary of the 2-disk, which has a unique spin structure, we see that the induced spin structure is
the connected double cover: since the bundle of frames on the disk is D2 × SO(2), we can imagine
a solid torus where each point on the parameterizing circle assigns a 2-frame for all points in the
orthogonal disk slice. Then, the bundle of frames for S1 as the boundary of the disk is realized as
a path along the boundary of this solid torus: pairing a point on the boundary of the disk with
the unique frame corresponding to a unique (respecting orientation) tangent vector and the inward
unit normal, we obtain a point on the boundary of the solid torus. Varying continuously, we obtain
a single path along the longitudinal boundary of this solid torus. This path is then the bundle of
frames S1 × SO(1) ' S1. As this path is along the longitude, the restriction of the principal spin
bundle will be the connected double cover of the circle. Thus, S1 equipped with the connected
double cover for its spin structure is spin bordant to zero. If we equip the disconnected double
cover, then we see that it is not spin bordant to zero, as there is no spin structure-preserving dif-
feomorphism between this circle and the circle that bounds the disk (the double coverings are not
diffeomorphic, as one is connected and the other is not). Moreover, by the same picture above, it
fails to be induced as a spin boundary (using that surfaces with boundary have a unique principal
SO(2)-bundle). However, two copies of S1 with the disconnected spin structure is spin bordant to
zero, since we can connect sum it to obtain a spin structure on the circle. But this is either the
disconnected or connected one, and as the disconnected one is not the connected one, two copies of
it must be (i.e., x+ x = x implies x = 0). This gives us that Ωspin

1 = Z/2.

Example. We have that the square of the bad spin structure over S1 is not a boundary (by a
heavy computation, according to Milnor [3]), but twice of it is spin bordant to one, again by al-
gebra. Moreover, any other surface of genus g can be surgered into a finite union of tori, so that
again it is either spin bordant to a boundary, or the nontrivial spin structure on the torus. Thus,
Ωspin

2 = Z/2. By surgery, every compact oriented 3-manifold is representable by a simply connected
manifold (so we avoid the thrice-power of the bad spin structure on S1). Moreover, every closed
oriented 3-manifold is obtained by surgery along a framed link to S3. Thus, we have Ωspin

3 = 0. We

have that Ωspin
4 ' Z generated by the K3 surface, and that Ωspin

5 = 0 by a previous discussion using
surgery (as every embedded 2-sphere in a spin manifold has trivial normal bundle) and Poincare
duality.

Clifford algebras and spinor bundles

In this section, we will explicitly define the Spin group using Clifford algebras, and see how the
Clifford algebra formalism is imported to the bundle setting. This will lead us naturally to the
notion of a Dirac operator and eventually its relation with certain topological invariants.

Definition. Define the Clifford algebra Cln as T (Rn)/I where T (Rn) =
⊕∞

k=0(Rn)⊗k is the free
tensor algebra generated by Rn and I is the ideal generated by elements of the form v · v + ||v||2 · 1
for || · || the standard Euclidean norm on Rn.

The imposed relation forces vectors in Rn to satisfy v · w + w · v = −2(v, w) where (·, ·) is the
standard inner product. Before proving anything about the Clifford algebra, we first establish its
universal property. Most of the resulting lemmas and propositions are then a result of abusing the
universal property with respect to an appropriate map. We have a natural embedding Rn ↪→ Cln
via including Rn as the 0-th graded part of the tensor algebra and then taking quotients.
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Proposition. Given a linear map f : Rn → A to an associative algebra with unit, such that the
map satisfies f(v) · f(v) = −||v||2 for all v, we have that the map factors uniquely:

Rn A

Cln

f

f̃

so that the diagram commutes. Furthermore, Cln is the unique associative algebra with this property.

Proof. The linear map induces an algebra map on the free tensor algebra. The resulting algebra
map then descends to the Clifford algebra as the map satisfies f(v) · f(v) = −||v||2.

The motivation for the Clifford algebra construction historically comes from physics. It should
be regarded as a refinement of the standard exterior algebra on a vector space, taking into account
the additional data of the quadratic form. This can be seen as follows: the tensor algebra has a
natural filtration F̃0 ⊂ F̃1 ⊂ ... ⊂ T where F̃m =

⊕m
k=0(Rn)⊗k. This filtration has the property

that F̃ l⊗F̃m ⊂ F̃ l+m. Projecting down by the quotient map π and setting Fm = π(F̃m) we obtain
a filtration of the Clifford algebra F0 ⊂ F1 ⊂ ... ⊂ Cln. Here, we have from the projection that
F l · Fm ⊂ F l+m, i.e., graded multiplication is also respected with Clifford multiplication. Thus
Cln is a filtered algebra. Setting Gm = Fm/Fm−1 we retain the graded multiplication and therefore
obtain the associated graded algebra of Cln, defined as G∗ =

⊕
m≥0 Gm.

Proposition. The associated graded algebra G∗ of Cln is naturally isomorphic to ∧∗Rn.

Proof. We invoke the universal property of the exterior algebra and define an alternating map
f :

⊗mRn → Fm → Fm/Fm−1 by sending vi1 ⊗ ... ⊗ vim to [vi1 · · · vim ]. Using the relation
v ·w+w ·v = −2(v, w) we obtain that the map is alternating, therefore descending to a map f̃ from
∧mRn (since multiplication by the scalar lowers the degree, which is quotiented out). Surjectivity
follows immediately, since the first map in the composition is the projection onto the m-th degree
of the filter from inclusion into the tensor algebra (and as all lower degree elements vanish). The
kernel of f is exactly comprised of m-homogeneous parts of elements ϕ in the ideal I of degree ≤ m
with respect to the filtration. By definition of being in the ideal, such elements can be written as
a finite sum ϕ =

∑
ai ⊗ (vi ⊗ vi + ||vi||2) ⊗ bi where ai, bi are pure tensors of degree ≤ m − 2 and

the vi are in Rn. Then the m-homogeneous parts are exactly ϕm =
∑
ai ⊗ vi ⊗ vi ⊗ bi where the

ai, bi have degree exactly m− 2. But such elements vanish in the exterior algebra. So f̃ is injective.
Therefore f̃ is a graded algebra isomorphism between ∧∗Rn and G∗.

Proposition. There is a canonical vector space isomorphism ∧∗Rn ' Cln respecting the filtrations.

Proof. Define a linear map from the m-fold direct product Rn × ...× Rn → Cln by

f(v1, ..., vm) = 1
m!

∑
σ sgn(σ)vσ(1) · · · vσ(m) for σ ∈ Sm.

This map is alternating as sgn(σ) changes sign when there is a transposition, so f descends to a
linear map f̃ from ∧mRn with image in Fm (as a sum of Clifford products of m elements). Com-
posing this map with Fm → Fm/Fm−1 gives us the map from the exterior algebra in the above
proposition (by reducing the sum to one term given distinct ordered points), so that f̃ is injective.
Taking direct sums over the maps gives us the canonical vector space isomorphism.
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This canonical vector space isomorphism will come into play later in the bundle setting; indeed it
will give us that the Euler characteristic of a manifold is the index of a Dirac operator. The graded
algebra structure is completely destroyed in this isomorphism, as one can tell from seeing what
Clifford multiplication corresponds to: for v ∈ Rn and ϕ ∈ Cln, we see that v · ϕ ' v ∧ ϕ − vxϕ
where x denotes contraction in the exterior algebra. As wedging increases degree and contrac-
tion decreases it, we see that the algebra structure is not at all preserved, which is consistent with
∧∗Rn being independent of the quadratic form. This change in grading is exactly what is needed for
the Euler characteristic to come into play later, using harmonic forms and the Hodge decomposition.

Let α : Rn → Rn be the “antipodal” map, i.e., the map that sends v 7→ −v. This linear map
extends to the tensor algebra as an algebra map and descends to the Clifford algebra, resulting in
an eigenspace decomposition Cln = Cl0n ⊕ Cl1n where Cl0n denotes the even part, i.e., the ϕ where
α(ϕ) = ϕ, and Cl1n denotes the odd part, i.e., the ϕ where α(ϕ) = −ϕ. Note that even (odd) ϕ are
a product of an even (odd) number of vector space elements.

Definition. Let Pin(n) denote the Pin group, the multiplicative subgroup of Cln generated by
vector space elements of unit norm. Let Spin(n) denote the Spin group, the subgroup of Pin(n) of
even elements; i.e., Spin(n) = Pin(n) ∩ Cl0n.

The Pin and Spin groups are the multiplicative subgroups generated by the unit sphere. For each
ϕ in Pin(n), consider the twisted conjugation map ψ 7→ α(ϕ)ψϕ−1. This gives us a map called
the twisted adjoint representation Ãd from Pin(n) to O(n). Note that restricting to the even
part equates it with the standard conjugation map Ad so that we have Ad: Spin(n) → SO(n).
One way to see why we map to the orthogonal group is that the conjugation map on a vector
is equal to a reflection across the orthogonal hyperplane of that vector. As all elements in Cln
are products of such vectors and α is an algebra map, we can then realize the adjoint map as
mapping to compositions of various reflections. By a classical theorem of Cartan-Dieudonné, O(n)
is actually generated by reflections. Similarly, the even elements are sent to an even number of
reflections, which are orientation-preserving (reflections alone are never orientation-preserving) so
Spin(n) lands in SO(n). Since an element and its antipode share the same reflecting hyperplanes,
the kernel of both adjoint maps is exactly Z/2. Thus these maps are precisely the double covering
maps that define Spin(n) and Pin(n) as the universal covers of SO(n) and O(n). To summarize,
we have the following exact sequences:

0 Z/2 Spin(n) SO(n) 1

0 Z/2 Pin(n) O(n) 1

Ad

Ãd

Let us say a brief word on importing this algebraic data to the bundle setting. Any orthogonal
transformation on Rn induces an automorphism on Cln by extension to the tensor algebra and
descending. Then, for any oriented vector bundle E → B, we can define the Clifford bundle as
Cl(E) ≡ Pso(E) ×ρ Cln where ρ : SO(n) → Aut(Cln) is the standard SO(n)-representation of
Cln (i.e., induced from standard representation ρ : SO(n) → SO(Rn)) and the product is the
Borel construction (take Pso(E) × Cln and quotient by the relation (p, ϕ) ∼ (pg−1, ρ(g)ϕ) for
g ∈ SO(n)). Alternatively, the Clifford bundle can be realized by the Clifford construction at each
fiber Cl(E)x ≡ T (Ex)/I(Ex). The antipodal map above then extends to a bundle isomorphism so
that we can decompose our Clifford bundle into ±1 eigenbundles, so that Cl(E) = Cl(E)0⊕Cl(E)1.

In the vector space setting, as α is an algebra map, we have that Clin ·Cl
j
n ⊂ Cl(i+j)mod 2

n so that Cln
becomes a Z/2-graded algebra. Similarly, the Clifford bundle Cl(E) becomes a bundle of algebras.
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We should note that the α-eigenbundle decomposition is not the only type of splitting we have
on Cl(E). Consider the oriented volume element ω = e1 · · · en for (e1, ..., en) a choice of orthonor-
mal basis. Any other choice of orthonormal basis will scale the element by the determinant of the
corresponding change of basis matrix, which is 1, so that ω is well defined. We now have to consider
different cases depending on the dimension. Keep in mind that by orthonormality, eiei = −1 and
eiej = −ejei in the Clifford algebra.

Lemma. We have that the oriented volume element ω satisfies the following identities:

ωv = (−1)n−1vω for v ∈ Rn

ω2 = (−1)
n(n+1)

2

In particular, if n is odd, then ω is central in Cln, i.e., commutes with all elements. If n is even,
then ϕω = ωα(ϕ).

Proof. The above identities follow from purely formal computation, using the relations of the Clif-
ford algebra.

The second identity above tells us that for n ≡ 0, 3 mod 4 we have ω2 = 1. In the bundle
setting, we can realize ω as a global section on the Clifford bundle, with multiplication by ω as a
bundle automorphism. If n ≡ 0, 3 mod 4, then multiplication by ω has eigenvalues ± 1 so that the
Clifford bundle decomposes yet again into eigenbundles Cl+(E)⊕Cl−(E). We can actually require
more: these eigenbundles are isomorphic bundles of subalgebras for n ≡ 3 mod 4, when ω is central.
Indeed, we can define π+ = 1

2(1 + ω) and π− = 1
2(1− ω) which are the projection maps onto each

eigenspace (so they satisfy π+ +π− = 1, (π±)2 = π±, and π+π− = π−π+ = 0). For n ≡ 3 mod 4, we
have ω is central over each fiber so these projections are central (so Cl±n = π± ·Cln = Cln ·π±). Thus
these eigenspaces are ideals, and therefore extend to bundles of subalgebras in the bundle setting.
Moreover, in this dimension ω is an odd element, so α switches these two subbundles/subalgebras:
i.e., α(Cl±(E)) = Cl∓(E). We can also decompose modules over the Clifford algebra (and therefore
bundles of modules over bundles of Clifford algebras).

Proposition. Let n ≡ 0 mod 4. If M is a Cln-module, i.e., M is a real vector space with an
algebra homomorphism Cln → Hom(M,M), then M decomposes

M = M+ ⊕M−

into the +1 and −1 eigenspaces for multiplication by ω. In fact we have M± = π± · M and
that module multiplication by any nonzero v ∈ Rn gives an isomorphic swap of the eigenspaces
M± →M∓.

Note that ω in this dimension is not central. The above proposition follows from the relations
between the projection maps above and the fact that ω ·π± = ±π±. The isomorphisms for nonzero
vectors follow from vπ+ = π−v and vπ− = π+v with v ·v = −||v||2 ·1. An example of such a module
above that decomposes is the Clifford algebra as a module over itself. Thus, we have another way
of inducing a Z/2 grading on the Clifford algebra.

Before we proceed, let us discuss the complex analogue of the above discussion. Define the complex

volume element as ωC = ib
n+1
2
cω. Note for n = 2m we have ωC = imω and that ωC = ω only in

dimensions 0, 7 mod 8. If n is odd, then both ω and ωC are central. Whereas ω2 = 1 only if n ≡ 0, 3
mod 4, we have that ω2

C = 1 for all n. Denote Cln as the complexified Clifford algebra Cln⊗C. Just
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as Cln decomposes into two isomorphic subalgebras for n ≡ 3 mod 4, we have that Cln = Cl+n ⊕Cl−n
for n odd (i.e., when ωC is central).

Proposition. Let n even. We again have M = M+ ⊕M− for M a Cln-module, and M± the ±1
eigenbundles from Clifford multiplication by wC. The M± are in fact Cl0n-modules.

We can now discuss similar decompositions for bundles of modules over bundles of Clifford algebras.
This is where we require our oriented vector bundle E → B to be spin. Define a spinor bundle
as S(E) ≡ Pspin(E) ×µ M where M is a module over Cln and µ : Spin(n) → SO(M) is Clifford
multiplication on M (we have that multiplication by Clifford elements is orthogonal with respect
to some inner product, by averaging a given one over the Clifford group). Our spinor bundle is a
bundle of modules over a bundle of algebras, with the fiberwise action of Cln on M defined smoothly
over the whole base. We also have that the sections of our spinor bundle form a module over the
algebra of sections of our Clifford bundle, again by pointwise multiplication. We can also define a
complex analog SC(E) ≡ Pspin(E)×µMC where MC is a complex module over Cln.

Proposition. For a spinor bundle S(E) for n ≡ 0 mod 4, we have the following decomposition:

S(E) = S+(E)⊕ S−(E)

into the +1 and −1 eigenbundles for multiplication by ω, a global section of Cl(E). For n even,

SC(E) = S+
C (E)⊕ S−C (E)

into the eigenbundles for multiplication by ωC, a global section of Cl(E).

Assuming our bundle is spin, we can also rewrite its Clifford bundle as Cl(E) = Pspin(E)×Ad Cln
since the adjoint representation exactly descends to the one induced from the standard representa-
tion.

As the above definitions of spinor bundles depend on modules over Clifford algebras, we will mention
a bit on their classification – in particular, the classification of representations of the Spin group.
First we observe that the even part Cl0n of the Clifford algebra in its antipodal decomposition is
itself a Clifford algebra.

Proposition. Cl0n is isomorphic to Cln−1 as an algebra.

Proof. (Sketch) Choose an orthonormal basis of Rn and define f : Rn−1 → Cln by sending ei 7→ en·ei.
Extend the map linearly and apply the universal property.

This realization of the even part of the Clifford algebra of Rn as the Clifford algebra of Rn−1

will come into play when considering irreducible representations. After a minor discussion on Z/2-
graded tensor products, one can see that the dimension of Cln is 2n. We can actually see explicitly
what the Clifford algebras are in lower dimensions:

Cl1 ' C
Cl∗1 ' R⊕ R
Cl2 ' H
Cl∗2 ' R(2)

where Cl∗n denotes the dual of Cln (i.e., take the quadratic form −|| · ||2 instead of the standard
form || · ||2) and R(2) denotes 2 × 2 real matrices. We can now classify all Clifford algebras.
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Proposition. We have the following isomorphisms:

Cln+2 ' Cl∗n ⊗ Cl2
Cl∗n+2 ' Cln ⊗ Cl∗2

Proof. (Sketch) Again one chooses an orthonormal basis to define a map from Rn+2 → Cln ⊗ Cl∗2
to use the universal property.

Theorem. (Bott periodicity) We have the following isomorphisms:

Cln+8 ' Cln ⊗ Cl8
Cl∗n+8 ' Cl∗n ⊗ Cl∗8
Cln+2 ' Cln ⊗C Cl2

Proof. (Sketch) The above isomorphisms use the above proposition and the fact that

R(n)⊗ R(m) ' R(nm)
R(n)⊗R K ' K(n) for K = C or H

C⊗R C ' C⊕ C
C⊗R H ' C(2)
H⊗R H ' R(4)

From this classification scheme, we see that all Clifford algebras are familiar matrix algebras with
coefficients in R,C, or H. This makes their representation theory relatively simple. Recall that a
representation of the Clifford algebra is an algebra homomorphism ρ : Cln → Hom(W,W ) where W
is a finite dimensional real vector space called a module over Cln, and the action of the representation
is called Clifford multiplication. Two representations ρj : Cln → Hom(Wj ,Wj) are equivalent if there
exists a R-linear isomorphism T : W1 → W2 such that T ◦ ρ1(ϕ) = ρ2(ϕ) ◦ T for all ϕ ∈ Cln, i.e.,
the map is equivariant with respect to the action of Clifford multiplication.

Theorem. Let K = R, C, or H, and consider the algebra of K-matrices over R. The natural
representation ρ : K(n)→Mat(n,K) is, up to equivalence, the only irreducible real representation
of K(n). The algebra K(n)⊕K(n) has exactly two equivalence classes of irreducible real represen-
tations, given by ρ1(ϕ1, ϕ2) = ρ(ϕ1) and ρ2(ϕ1, ϕ2) = ρ(ϕ2) acting on Kn.

The irreducible representations of Clifford algebras turn out to be related to the K-theory of a
point, via the Atiyah-Bott-Shapiro construction which we will outline later. Their importance in
the context of these notes is relegated to the moral that there are not too many spin representations
or Clifford algebras, and that they are all determined by the Clifford algebras of Rn for n = 1, ..., 8
by Bott periodicity. We have the following two propositions regarding irreducible representations,
mimicking our earlier propositions about the Clifford and spinor decompositions:

Proposition. For ρ : Cln → HomR(W,W ) where n ≡ 3 mod 4, we have that

ρ(ω) = Id or ρ(ω) = −Id for ω the volume element.

Both possibilities can occur and the corresponding representations are equivalent. Similarly, for the
complex case, we have for n odd

ρ(ωC) = Id or ρ(ωC) = −Id for ωC the complex volume element.

Proposition. For ρ : Cln → HomR(W,W ) where n ≡ 0 mod 4 so that W = W+ ⊕ W− for
W± = (1±ρ(ω)) ·W , we have that each of the subspaces W+ and W− are invariant under the even
subalgebra Cl0n. Under the isomorphism Cl0n ' Cln−1, these spaces correspond to the two distinct
irreducible real representations of Cln−1. The analogous statements are true for Cln for n even,
with respect to ωC.
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The importance of these statements is that in dimensions 4k, we have a unique complex spinor
bundle, given by the irreducible complex Clifford module, that decomposes via the complex volume
element into a sum of two complex irreducible (with respect to representations one dimension lower)
Clifford modules. This gives us the index theorem for the Â-genus for spin 4k-manifolds. One can
do a similar analysis for general 4k-manifolds instead, by splitting the Clifford bundle itself with
the complex volume element, and this gives us the index theorem for the signature.

For completion, we mention that a real spin representation ∆n : Spin(n) → GL(S) is defined
by restricting an irreducible real representation Cln → HomR(S, S) to Spin(n). Similarly a com-
plex spin representation ∆C

n : Spin(n) → GLC(S) is given by restricting an irreducible complex
representation Cln → HomC(S, S) to Spin(n). Based on the dimension, these spin representations
are irreducible, a direct sum of two equivalent irreducible representations, or a direct sum of two
inequivalent irreducible representations. These really only come into play to set up spinor bundles
in the first place, and again the moral is that there are not too many of them up to isomorphism,
due to Bott periodicity and the classification of Clifford algebras. Moreover, they do not necessarily

descend to representations of SO(n), unlike the analogous situation for ˜GL(n,R) and GL(n,R).

The upshot is that irreducible representations, both real and complex, of Clifford algebras are
completely known and determined by the first eight, where in most cases there is only one up to
isomorphism. For the real case, there are two inequivalent ones in n ≡ 3, 7 mod 4, and for the
complex case there are two for n odd. These pairs allow for an irreducible module in n ≡ 0 mod
4 to decompose into two irreducible (again with respect to a subrepresentation on the even part)
modules, which in the bundle setting gives us self-adjoint elliptic operators. This in turn allows
us to realize many topological invariants as the indices of such operators restricted to parts of the
decomposition.

Dirac bundles and Dirac operators

Let us first recall the notion of a connection on a principal G-bundle. A connection τ is a smooth
collection of G-invariant horizontal tangent subspaces of the tangent bundle of PG, where horizontal
means complementary to the tangent space of the fiber. We say a vector bundle has a connection if
it has one on its principal SO(n)-bundle of frames. The picture is that the connection allows one to
“connect” different fibers together so that we may take derivatives of sections, much like the picture
for the Lie derivative of vector fields. Identifying T ∗M ⊗ E with Hom(TM,E) we see that we are
assigning to each section of E, a linear map from TM to E; in other words, for each vector field, we
are assigning a derivative in the direction of that vector field, exactly like a directional derivative.
Indeed, for a fixed vector field V , we have that ∇V is a map Γ(E) → Γ(E). We define our notion
of derivative for sections as follows:

Definition. Given a connection on a vector bundle over a smooth manifold E → M , a covariant
derivative is a linear assignment ∇ : Γ(E)→ Γ(T ∗M ⊗ E) satisfying ∇(fσ) = df ⊗ σ + f∇σ for a
smooth function f , and a section σ.

At each point p ∈ PG, we have that τp determines a linear projection TpPG → Tp(G · p) where
G · p is the orbit of p under the action of G (i.e., we have a projection to the tangent space of the
fiber). Although the fiber is not canonically isomorphic to G, we have that there is a canonical
isomorphism for a fixed p from Tp(G · p) ' g the tangent space to the identity of G. We then have
a linear map TPG → g which is a Lie algebra-valued 1-form, called the connection 1-form ω. We
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will be mainly interested in the case of G = SO(n) with g = so(n) the Lie algebra of real, skew
symmetric n × n-matrices (so that ωij = −ωji). This connection 1-form uniquely determines the
connection (since τp = ker(ωp)) and vice versa. Thus it also determines the covariant derivative,
which is why the covariant derivative crucially depends on a connection.

Proposition. Let ω be a connection 1-form on Pso(E). Then ω determines a unique covariant
derivative on E by the rule

∇ei =
∑n

j=1 ω̃ji ⊗ ej

where E = (e1, ..., en) is a local family of pointwise orthonormal sections of E, i.e., a local section
of Pso(E), and where ω̃ = E∗ω. This covariant derivative satisfies the rule

V 〈e, e′〉 = 〈∇V e, e′〉+ 〈e,∇V e′〉

for all V ∈ TM and e, e′ ∈ Γ(E), where 〈·, ·〉 denotes the inner product on E. Conversely, any
covariant derivative satisfying this relation determines a unique connection 1-form by the local
expression above.

In terms of a basis for the skew-symmetric matrices, we have that ω = −
∑

i<j ωijei ∧ ej . Given a
connection on a spin vector bundle E →M , we can associate a connection to an associated spinor
bundle as follows. Let ξ : Pspin(E)→ Pso(E) be the given spin structure and S(E) = Pspin(E)×µM
be an associated spinor bundle, with M some module over Cln. The connection τ on Pso(E) lifts
via the double covering to a connection τ ′ on Pspin (one can pullback the connection 1-form). From
there, we can extend τ ′ trivially to τ ′ × 0 to a connection on Pspin(E) × M . As τ ′ is already
Spin(n)-invariant, we can take a quotient by the action and induce a connection τ̃ on S(E). This in
turn induces a covariant derivative on our spinor bundle. Similarly we have an induced connection
on the Clifford bundle, by the same construction. It turns out one can relate the old connection
1-form on a principal G-bundle with the induced one on the associated riemannian vector bundle
exactly by the induced Lie algebra homomorphism from the G-representation. Looking at the
SO(n)-representation acting on Cln, we have that the corresponding Lie algebra homomorphism
maps into derivations of the Clifford algebra.

Proposition. The covariant derivative ∇ on Cl(E) acts as a derivation on the algebra of sections,
i.e.,

∇(ϕ · ψ) = (∇ϕ) · ψ + ϕ · (∇ψ)

for any two sections ϕ and ψ of Cl(E). Furthermore, under the canonical identification Cl(E) '
∧∗(E), the covariant derivative ∇ preserves the subbundles ∧p(E) and agrees there with the covariant
derivative induced by the representation ∧pρn (i.e., the usual covariant derivative).

Corollary. The subbundles Cl0(E) and Cl1(E) are preserved by ∇. Furthermore, the oriented
volume form ω is globally parallel, i.e.,

∇ω = 0.

Therefore when n ≡ 0, 3 mod 4 the eigenbundles of ω are also preserved by ∇.

Proposition. The covariant derivative ∇ on S(E) acts as a derivation with respect to the module
structure over Cl(E), i.e.,

∇(ϕ · σ) = (∇ϕ) · σ + ϕ · (∇σ)
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for any section ϕ of Cl(E) and any section σ of S(E).

Recall that for a Cln-module W , we can always choose an inner product on W such that Clifford
multiplication by unit vectors in Rn is orthogonal, by averaging a given inner product over the
Clifford group, i.e., the finite group Fn ⊂ Cl×n generated by an orthonormal basis of Rn (finite
due to the relations between the basis elements from the Clifford algebra). This extends to spinor
bundles in that we can always choose a bundle metric such that fiberwise Clifford multiplication by
unit vectors in TM is orthogonal.

Definition. A Dirac bundle over a riemannian manifold M is a bundle S of modules over Cl(M)
together with a riemannian metric such that Clifford multiplication by unit vectors in TM is orthog-
onal, and a connection such that its covariant derivative is a derivation with respect to the module
multiplication of Cl(M).

Example. For S = Cl(M) with its canonical connection, viewed as a bundle of modules over itself,
is a Dirac bundle. The fact that the covariant derivative is a derivation follows from the above
propositions.

Example. For M a spin manifold, any spinor bundle S associated to TM is a Dirac bundle, again
from the above propositions.

Example. Let S be a Dirac bundle, and E be any vector bundle over M . Then S⊗E is a bundle of
modules over Cl(M), where module multiplication is given on simple tensors by ϕ·(σ⊗e) ≡ (ϕ·σ)⊗e
for ϕ ∈ Cl(M), σ ∈ S, and e ∈ E. The tensor product metric is again orthogonal with respect to
Clifford multiplication by unit tangent vectors. Finally, S ⊗ E has the tensor product connection
∇ ≡ ∇S ⊗∇E which is defined on sections of the form σ⊗ e by ∇(σ⊗ e) = (∇Sσ)⊗ e+σ⊗ (∇Ee).
This connection is again a derivation. Thus, S⊗E is a Dirac bundle for any vector bundle E. This
construction gives us an enormous amount of Dirac bundles.

Definition. Let M be any riemannian manifold with Clifford bundle Cl(M) and let S be any
bundle of modules over Cl(M) with a riemannian connection and metric. The first-order differential
operator D : Γ(S)→ Γ(S) defined by

Dσ =
∑n

j=1 ej · ∇ejσ

is called the Dirac operator, where the above local expression is at x ∈ M with e1, ..., en an or-
thonormal basis of TxM , ∇ the covariant derivative on S, and “·” Clifford multiplication.

The operator D2 is called the Dirac laplacian. Recall that the principal symbol of a differential
operator D : Γ(E)→ Γ(E) is a linear map that associates to each point x ∈M and each cotangent
vector ξ ∈ T ∗x (M) a linear map σξ(D) : Ex → Ex. If in local coordinates we have

D =
∑
|α|≤mAα(x)∂

|α|

∂xα and ξ =
∑

k ξkdxk

where m is the order of D, then σξ(D) ≡ im
∑
|α|=mAα(x)ξα where ξα = ξα1

1 · · · ξαnn for α a
multi-index. The operator is elliptic if the principal symbol is an isomorphism for every ξ 6= 0.

Lemma. Let D be the Dirac operator of the bundle of modules S over a Clifford bundle Cl(M).
Then for any ξ ∈ T ∗M ' TM we have

σξ(D) = iξ
σξ(D

2) = ||ξ||2
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where the symbol on the right denotes Clifford multiplication by the vector ξ and scalar ||ξ||2 respec-
tively. In particular, both D and D2 are elliptic operators.

Proof. The covariant derivative is a first-order operator, with ∇ej = ∂/∂xj + zero-order terms.
So D is a first-order operator, with D =

∑
ej(∂/∂xj) + zero-order terms. Thus for any cotangent

vector ξ =
∑
ξjdxj , we have by definition that σξ(D) = i

∑
ejξj = iξ i.e., the sum of the vector com-

ponents with respect to the basis is the vector. The second follows from σξ(D
2) = σξ(D) ◦ σξ(D) =

−ξ · ξ = ||ξ||2.

Thus any Dirac bundle has a canonically associated Dirac operator.

Theorem. Let D be the Dirac operator of any Dirac bundle over a compact riemannian manifold
M . Then ker D = ker D2 and this space has finite dimension.

Note: we made an implicit assumption that all spinor bundles were bundles of left modules over
itself with respect to Clifford multiplication. However, for the Clifford bundle, it is also true that it is
a right module over itself and still satisfies that its canonical connection is a derivation. This allows
one to define a “right-handed” Dirac operator D̂ by setting D̂ϕ =

∑n
j=1(∇ejϕ) ·ej with its principal

symbol being right multiplication by iξ. Recall that the exterior algebra has two canonical first
order operators: the exterior derivative d : ∧∗(M)→ ∧∗(M) and its adjoint d∗ : ∧∗(M)→ ∧∗(M).
The adjoint is given by

d∗ = (−1)np+n+1 ∗ d∗

on ∧p(M) where ∗ : ∧p(M)→ ∧n−p(M) is the Hodge star operator, i.e., the linear map defined by
the condition that ϕ ∧ ∗ψ = 〈ϕ,ψ〉 ∗ 1 where ∗1 is the volume form.

Theorem. Under the canonical isomorphism Cl(M) ' ∧∗(M), the Dirac operators of Cl(M)
satisfy the following.

D ' d+ d∗

D̂ ' (−1)p(d− d∗)

Consequently since d2 = (d∗)2 = 0 we also have

D2 = D̂2 = dd∗ + d∗d = ∆
DD̂ = D̂D

where ∆ is the Hodge laplacian.

Recall that the index of an operator D is ind(D) ≡ dim(ker D) - dim(coker D), which for an elliptic
operator over a compact manifold is always defined, as the kernel and cokernel are always finite
dimensional (compactness is crucial here). We will now discuss some examples of fundamental Dirac
operators for different spinor bundles decomposed in different ways.

Let S be a Dirac bundle with D a Dirac operator over a riemannian manifold M , and suppose
S is Z/2-graded, i.e., there is a parallel decomposition S = S0 ⊕ S1 so that Cl(M)i · Sj ⊂ Si+j for
i, j ∈ Z/2. Then D decomposes as

D =

(
0 D1

D0 0

)
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where D0 : Γ(S0)→ Γ(S1) and D1 : Γ(S1)→ Γ(S0) are adjoint to each other, as D is self-adjoint.
Recall that we have two important methods on endowing a spinor bundle with a Z/2 grading: we
can either decompose it using the antipodal α eigenbundles, or using the complex volume element
ωC in dimensions 4k using the representation theory of Clifford algebras. Both methods relate well
known topological invariants with the indices of these Dirac operators.

Example. Let S = Cl(M) = Cl0(M) ⊕ Cl1(M) be the Clifford bundle considered as a Dirac
bundle, split into the eigenbundles of α the antipodal map. Under the canonical isomorphism
Cl(M) ' ∧∗(M) we see that D0 : Γ(Cl0(M))→ Γ(Cl1(M)) corresponds to the operator

d+ d∗ : ∧even(M)→ ∧odd(M)

so that ind D0 = dim Heven− dim Hodd = χ(M) where H ≡
⊕n

p=0 Hp = ker(∆) is the space of
harmonic p-forms. Thus, the Euler characteristic is the index of the even part of the Dirac operator
defined on the Clifford bundle.

Example. Let M be a 4k-manifold and now let S = Cl(M) = Cl+(M) ⊕ Cl−(M), this time
decomposed into the eigenbundles of ωC = (−1)kω the complex volume element; although ωC de-
composes complex Clifford modules into eigenspaces in every complex dimension, it is in dimensions
4k (i.e., even complex dimensions) that the decomposition is exactly the complexification of the
splitting in the real setting (since it equals, up to sign, exactly the real volume element). Again take
D to be the Dirac operator corresponding to d+ d∗. There is a corresponding decomposition ker D
= ker D+⊕ ker D−. Since ωC is parallel (as 0 = d〈ω, ω〉 = 〈∇ω, ω〉 as ω has unit norm globally), it
preserves ker D and the subspaces ker D± are exactly the ±1 eigenspaces under multiplication by
ωC on ker D (again by computation showing anticommutativity of D and ω). Thus, we have

ker D± = (1± ωC)ker D

Under the canonical isomorphism Cl(M) ' ∧∗(M) we again have that ker D ' H = H0⊕ ...⊕H4k

the space of harmonic forms. Under this isomorphism, left multiplication by ωC corresponds to the
Hodge ∗-operator. So for each p = 0, ..., 2k we have an isomorphism ωC : Hp → H4k−p. This in turn
implies that the space H(p) ≡ Hp⊕H4k−p for p < 2k has a decomposition H(p) = H+(p)⊕H−(p)
where the subspaces H±(p) ≡ (1±ωC)H(p) are of the same dimension (via an explicit isomorphism,
mapping α ⊕ β to −α ⊕ β). Since ker D± = H± = H±(0) ⊕ ... ⊕ H±(2k − 1) ⊕ (H2k)± where
(H2k)± = (1±ωC)H2k we can restrict D to the “positive” part of this grading (and therefore maps
to the “negative” part by anticommutativity with ωC in even dimensions) and conclude

ind D+ = dim(H2k)+− dim(H2k)− = sig(M)

where sig(M) denotes the signature of M , under the Hodge/de Rham isomorphism. Indeed, the
signature is just the difference of the dimensions of the +1 and −1 eigenspaces of ∗ on H2k, since
∗ ' ωC in dimension 2k.

Example. Let M be a 4k-spin manifold and let /SC be the unique complex spinor bundle with Dirac
operator /D, called the Atiyah-Singer operator. Again we have a decomposition /SC = /S

+
C ⊕ /S

−
C

into eigenbundles of the complex volume element ωC. It is a corollary of the Atiyah-Singer index
theorem that ind( /D) = Â(M) where Â(M) is the Â-genus.

In general the Â-genus is not an integer. For example, for a compact 4-manifold X, we have
that −Â(X) = 1

8sig(X) = 1
24p1(X), where p1 is the first Pontryagin number of X. In particular,
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for CP2, as H2(CP2,Z) ' Z, its signature is 1, so its Â-genus is −1
8 . Thus, the above result tells us

that the Â-genus of a compact spin manifold is always an integer.

To even begin to define the Â-genus, we first define a multiplicative sequence.

Definition. Let Q[[x]]̂ denote the set of formal power series in x with rational coefficients and
constant term 1. Fix an element f(x) ∈ Q[[x]]̂and for each n ∈ N consider the formal power series
in n indeterminates given by f(x1) · · · f(xn). This is symmetric in the xj and so has an expansion
of the form

f(x1) · · · f(xn) = 1 + F1(σ1) + F2(σ1, σ2) + F3(σ1, σ2, σ3) + ...

where

σk(x1, ..., xn) ≡
∑

i1<...<ik

xi1 · · · xik for 1 ≤ k ≤ n

denotes the kth elementary symmetric function in x1, ..., xn and where Fk is weighted homogeneous
of degree k. This sequence of polynomials {Fk(σ1, ..., σk)}∞k=1 is called the multiplicative sequence
determined by the formal power series f(x).

Example. Associated to the formal power series

l(x) ≡
√
x

tanh
√
x

= 1 + 1
3x−

1
45x

2 + ...

is a multiplicative sequence {Lm} called the Hirzebruch L-sequence. Replace the symmetric func-
tions σk with pk the kth pontryagin class. The first few terms of this sequence are

L1(p1) = 1
3p1

L2(p1, p2) = 1
45(7p2 − p2

1)
L3(p1, p2, p3) = 1

33·5·7(62p3 − 13p1p2 + 2p3
1)

Given a real bundle E → X, the total L-class of E is the sum

L(E) ≡ 1 + L1(p1E) + L2(p1E, p2E) + ...

The L-genus L(X) is then the number 〈〈L(TX), [X]〉 which is equal to 0 if dim X is not 4k and
is equal to 〈Lk(p1(TX), ..., pk(TX)), [X]〉 if dim X is 4k. By the Hirzebruch signature theorem, we
have that L(X) = sig(X).

Example. Associated to the formal power series

â(x) ≡
√
x/2

sinh(
√
x/2)

= 1− 1
24x+ 7

27·32·5x
2 + ...

is a multiplicative sequence {Âm} called the Â-sequence. Again, using pontryagin classes, we have
that the first few terms in this Â-sequence are

Â1 = − 1
24p1

Â2 = 1
27·32·5(−4p2 + 7p2

1)

Â3 = − 1
210·33·5·7(16p3 − 44p2p1 + 31p3

1)

so that we can define the total Â-class of a vector bundle E → X as the sum

Â(E) = 1 + Â1(p1E) + Â2(p1E, p2E) + ...
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Thus, we can now define the Â-genus Â(X) as the number 〈Â(TX), [X]〉 which is 0 if dim X is not
4k and is 〈Âk(p1(TX), ..., pk(TX)), [X]〉 if dim X is 4k.

Note that L(X) is always an integer. This is not the case with Â(X) from the example of CP2;
we have in fact that Â(X) = −1

8 sig(X) when X is a 4-manifold. From the Atiyah-Singer index

theorem however, it follows that, for spin manifolds, the Â-genus is always an integer.

Example. Let us compute Â(CP2). We have

Â(CP2) = − 1

24
p1(CP2)

=
1

24
c2(TCP2 ⊗ C)

=
1

24
c2(TCP2 ⊕ TCP2)

=
1

24
(c2(CP2) + c1(CP2)c1(CP2) + c2(CP2)

=
1

24
(2c2(CP2)− c1(CP2)2)

=
1

24
(6− 9)

= −1

8

Example. Let us compute Â(K3) for K3 the degree 4 hypersurface in CP3.

Â(K3) = − 1

24
p1(K3)

=
1

24
(2c2(K3)− (c1(K3))2)

=
48

24
= 2

since c1(K3) = 0 and as the top Chern class is the Euler class, which evaluates the Euler charac-
teristic χ(K3) = 24. As signature is additive, this also gives us Â for connect sums of K3s.

Representations and K-theory

This section discusses a little more on the irreducible representations of Clifford algebras and their
relation to K-theory. In particular, we aim to define the Atiyah-Bott-Shapiro map.

Definition. Let X be a compact manifold, V (X) the set of all isomorphism classes of complex vector
bundles over X, and F (X) the free abelian group generated by the elements of V (X), which form
an abelian semigroup with respect to Whitney sum. Let E(X) be the subgroup of F (X) generated
by elements of the form [V ] + [W ]− ([V ]⊕ [W ]), where + denotes addition in F (X) and ⊕ denotes
addition in V (X). The K-group of X is defined to be the quotient

K(X) ≡ F (X)/E(X)

We can define the analogous real K-group for X, denoted KO(X) by taking isomorphism classes
of real vector bundles; all following properties hold through. A fact that we will not prove here
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(but is not too difficult using some algebra) is that every element in K(X) can be written in the
form [V ] − [W ] for [V ], [W ] ∈ V (X). Notice that for every vector bundle V over X, there is a
“complementary” bundle V ⊥ such that V ⊕ V ⊥ is trivial. One sees this first by realizing that for
every vector bundle V , there is some index N and a continuous map from V → CN which is in-
jective and linear on the fibers, by using the local trivializations to embed the bundle fibers locally
into some large enough Euclidean space and then using a partition of unity (as in the realization
of the Grassmannian as a classifying space). Then one takes this embedding and takes a quotient
to obtain the complementary bundle. However, this complementary bundle is not unique – one
can add trivial bundles. The upshot is that every element of K(X) can be written in the form
[U ]− [τn] for some n: since we have that every element is of the form [V ]− [W ], we take a trivializ-
ing complement to [W ] to obtain [V ]−[W ] = [V ]+[W⊥]−[W⊥]−[W ] = [V ]+[W ]⊥−[τn] = [U ]−[τ ]n.

Define the reduced K-group to be K̃(X) ≡ ker (K(X) → K(pt) ' Z) where pt is a distinguished
point, so that the exact sequence splits:

0→ K̃(X)→ K(X)→ K(pt)→ 0

One can think of the reduced K-group as the group of isomorphism classes of complex vector bundles
up to stable equivalence, i.e., two elements in the reduced K-group are equivalent if the bundles
representing them are isomorphic upon addition of trivial bundles. The ordinary K-group records
the additional data of the dimension at which these bundles trivialize, as noted above. Note that
we can define a product structure on the K-group by taking tensor powers and then pulling back
by the diagonal. This makes K(X) into a ring.

Definition. Let Y be a nonempty closed subset of X. Then the relative K-groups are

K(X,Y ) ≡ K̃(X/Y )

where X/Y is taken to have Y as its basepoint. If Y is empty, then define X/Y as the space
X+ ≡ X ∪ {p̃t} where p̃t is a disjoint point which plays the role of basepoint.

If X is not basepointed, we have that K(X) ' K̃(X+) = K(X,∅).

Definition. For X a compact basepointed space, or when (X,Y ) is a compact pair, we define

K̃−i(X) ≡ K̃(Σi(X))
K−i(X,Y ) ≡ K̃−i(X/Y ) ≡ K̃(Σi(X/Y ))

where Σ denotes the reduced suspension of X, and Σi is the i-fold suspension. For spaces that are
not necessarily basepointed, we define

K−i(X) ≡ K−i(X,∅) ≡ K̃(Σi(X+))

We have that K̃−i(X × Y ) ' K̃−i(X ∧ Y )⊕ K̃−i(X)⊕ K̃−i(Y ) for all i and for X,Y basepointed.
Moreover we have a pairing given by tensor product K̃−i(X) ⊗ K̃−j(Y ) → K̃−i−j(X ∧ Y ) for any
X,Y and for any i, j ≥ 0. Combining these two and replacing X with X+ and Y with Y +, we have
a pairing K−i(X) ⊗ K−j(Y ) → K−i−j(X × Y ) so that K−∗(pt) becomes a graded ring. Indeed,
K−∗(pt) is well known:

K−i(pt) =

{
Z if i even

0 if i odd
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Indeed K−i(pt) = K̃(Si) are the complex vector bundles up to stable equivalence on the i-sphere,
which are known by Bott periodicity. Moreover, for any basepointed space (X,pt), by the above
pairing, we have that K−∗(X) is a graded module over K−∗(pt). We want to define the K-groups
in another way, however, so as to define the Atiyah-Bott-Shapiro map. For a pair (X,Y ) consider
the set of elements V = (V0, V1;σ1) where V0, V1 are vector bundles on X and where σ1 is an
isomorphism between these two bundles restricted to Y . Say two such tuples are isomorphic when
there are bundle isomorphisms ϕi : Vi → V ′i over X so that the following diagram commutes:

V0|Y V1|Y

V ′0 |Y V ′1 |Y

σ1

ϕ0 ϕ1

σ′1

An element V = (V0, V1;σ1) is elementary if V0 = V1 and σ1 = Id. One can then say that
two elements V,V’ are equivalent if there exist elementary elements E1, ..., Ek,F1, ...,Fl and an
isomorphism

V⊕E1 ⊕ ...⊕Ek ' V’⊕ F1...⊕ Fl

The equivalence class of such an element will be denoted by [V0, V1;σ1]. It turns out that this group
L(X,Y ) will be isomorphic to K(X,Y ). The proof of the equivalence is the “difference bundle
construction” which is a generalization of the clutching map picture for bundles over the sphere.

Given an element V = [V0, V1;σ], we associate to it an element χ(V ) ∈ K(X,Y ) via the following
difference bundle construction. Set Xk = X × k for k = 0, 1 and consider the space Z = X0 ∪X1

obtained from the disjoint union X0
∐
X1 by identifying y × {0} with y × {1} for all y (much like

how the sphere is obtained from the disjoint union of two disks glued along their boundaries). The
natural sequence

0 K(Z,X1) K(Z) K(X1) 0
j∗ i∗

is split exact since there is a retraction ρ : Z → X1. We also have an isomorphism ϕ : K(Z,X1)→
K(X,Y ) induced by the map of pairs (X,Y )→ (Z,X1) which identifies X with X0. Now we apply
the same picture for the clutching map over the sphere: define a new vector bundle W over Z by
setting W |Xk ≡ Vk and identifying over Y via the isomorphism σ. Setting W1 ≡ ρ∗(V1) we have

[W ] − j∗ϕ−1χ(V) = [W ] − [W1] where χ(V) =
n∑
k=0

(−1)k[Vk]. This defines the unique equivalence

of functors χ : L(X,Y )→ K(X,Y ).

Let us finally come to the Atiyah-Bott-Shapiro isomorphism ϕ∗ : (M̂C
∗ /i
∗M̂C
∗+1) → K−∗(pt) and

similarly the real case ϕ∗ : (M̂∗/i
∗M̂∗+1)→ KO−∗(pt) where M̂C

∗ and M̂∗ denote the Grothendieck
group of irreducible complex and real Z/2-graded representations of the complex and real Clifford
algebra, respectively. We will only define the map here, and not prove that it is an isomorphism
(for details, see [1]). Let W = W 0 ⊕W 1 be a Z/2-graded module over Cln. Define a vector bundle
over the sphere by the clutching construction: let Ek = Dn ×W k for k = 0, 1 be the trivial bundle
over the n-disk Dn, and glue the two copies together by the isomorphism µ defined on Sn−1 where

µ(x,w) = (x, x · w)
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i.e., µ is Clifford multiplication by the elements of the sphere, thought of as being in Rn ⊂ Cln. This
defines a vector bundle ϕ∗(W ) = [E0, E1;µ] ∈ K(Dn, Sn−1) = K(Sn). Note however the natural
inclusion map i : Rn ↪→ Rn+1 pulls back Clifford representations via restriction. If the Z/2-graded
module W is actually the pullback of a representation from a higher dimensional module, then the
clutching map (in this case given by multiplication by elements of the equatorial sphere on the
module elements) extends over the disk as an isomorphism by setting

µ(x,w) = (x, (x+
√

1− ||x||2en+1) · w)

where en+1 is the extra vector in Rn+1. Thus, if the module arises as a pullback from a higher
dimensional module, then the resulting bundle is trivial, as the clutching map extends over the disk
(and is therefore nullhomotopic). Therefore we have the following theorem:

Theorem. (Atiyah-Bott-Shapiro isomorphism) The maps ϕ∗ induce graded ring isomorphisms

ϕ∗ : (M̂C
∗ /i
∗M̂C
∗+1)→ K−∗(pt)

ϕ∗ : (M̂∗/i
∗M̂∗+1)→ KO−∗(pt)

The existence of these isomorphisms is a profound and important fact towards explaining the fun-
damental role played by Clifford algebras in the index theory for elliptic operators.
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