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Abstract

These are notes for a talk in the Graduate Student Seminar at Stony Brook. We discuss
polynomials, covering spaces, and Galois theory, and how they all relate through the unifying
concept of “resolvent degree”, following Farb and Wolfson[1]. We will also see how this concept
relates Hilbert’s 13th problem (among others) to classical enumerative problems in algebraic
geometry, such as 27 lines on a smooth cubic, 28 bitangents on a planar quartic, etc.

Algebraic functions and roots of topology

First, a historial note: the motivation for the concept of the fundamental group comes from studying
differential equations on the complex plane (i.e., the theory of Riemann surfaces); namely, in the
study of the monodromy of multi-valued complex functions. Consider for example, the path integral∫

1/z around the punctured plane. This is nonzero and in fact, its value changes by multiples of
2πi based on how many times you wind around the puncture. This behavior arises since the path
integral of this particular function is multivalued; it is only well defined as a function up to branch
cuts. In a similar spirit, we can consider the function

√
z which, as we go around the punctured

plane once, sends a specified value to its negative.

More specifically, suppose we have a branched covering space π : Y → X, i.e., a map and a
pair of spaces such that away from a nowhere dense subset of X, called the branched locus of X,
we have that π is a covering map. Given such a branched covering, we can define a monodromy
action of the fundamental group on the fiber as follows: fix a basepoint x ∈ X−Xbr away from the
branched locus, a point x̃ in the fiber over x, and a loop γ based at x. Lift the loop to a path in the
covering and consider its endpoint, which is generally another point in the fiber, denoted γ · x̃. This
describes an action of π1(X − Xbr, x) on the fiber of the branched cover away from the branched
locus, as in ordinary covering space theory. The image of the homomorphism π1(X −Xbr, x)→ Sn
where Sn denotes the symmetric group on n points, acting on the n points of the fiber, is called the
monodromy group. We allow n to be infinite. The idea is that the fundamental group is permuting
the points of the fiber.

Example. For the path integral
∫

1/z above, we have the (genuine) cover π : C̃∗ → C∗ where
π is vertical projection, visualized as projecting an infinite helicoid sitting above the punctured
plane, obtained from gluing along all the different branch cuts of the logarithm. As one winds once
around a loop, one returns to the fiber but by an addition of 2πi. Since this is an action on the
universal cover, the action is free. The monodromy group in this example is then precisely Z.

Example. For the function
√
z, we can consider the function z 7→ z2, viewed as a branching of

CP1 → CP1 with 0 and ∞ as its two branch points. Thus, removing the two points, we have a two-
fold covering map C∗ → C∗. The monodromy representation is then a homomorphism Z → Z/2.
As observed above, the action is nontrivial; winding around a loop sends a point in the fiber to the
other point in the fiber. The monodromy group is then precisely Z/2.

Example. One can also check that the monodromy group of CP1 z 7→zd−−−→ CP1 is Z/d. This is
due to the fact that the action merely multiplies by the d-th roots of unity.
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The above analysis regarding
√
z also shows that one cannot globally find a section of the branched

cover CP1 z 7→z2−−−→ CP1. This would be tantamount to expressing
√
z globally on C; one can also

prove this by looking at the induced maps on the fundamental groups; if there were a global section,
we would have that the induced map of the covering surjects onto the fundamental group of the
base. But the map is exactly 1 7→ 2 from Z to Z.

The problem of determining when a given branched cover has a global section or not has its roots
in classical algebraic geometry, although often not explicitly so. For example, suppose given a
polynomial, we want to find its roots. We can reformulate this in terms of covers: define Rootsn
as ordered tuples of complex numbers in C, i.e. Cn, and define Polyn as monic polynomials, i.e.,
ordered tuples of complex numbers (a1, ..., an) where the ai represent the coefficients of the poly-
nomial zn + a1z

n−1 + ...+ an, which is also equal to Cn. So far, nothing seems interesting.

However, consider the following Viete map Φ : Rootsn → Polyn sending the tuple (r1, ..., rn) to
(−

∑
ri,

∑
rirj , ..., (−1)nr1...rn) i.e., we send the roots of a polynomial to that polynomial using

the fact that the coefficients of a given polynomial are the elementary symmetric functions in the
roots. Since the Viete map is defined in terms of symmetric functions, it is Sn-equivariant and
so descends to a map Cn/Sn → Cn. This map is actually an isomorphism of algebraic varieties
(note this is not true for R). After identifying Polyn with Cn/Sn we see that the Viete map
Φ : Rootsn ' Cn → Polyn ' Cn/Sn is an n!-sheeted branched covering map, where the branching
locus is exactly the set of polynomials with multiple roots, called the discriminant locus. A fiber
away from the branching locus will exactly be all n! permutations of the n distinct roots; a fiber over
the branching locus will have fewer permutations, depending on the multiplicity of the roots. The
Viete map is exactly a covering away from the branched locus, as the determinant of its Jacobian
is exactly ∆2

n where ∆n(a1, ..., an) is the discriminant for a degree n polynomial, which vanishes iff
there is a multiple root. In general, there is no global section for this branched cover; it is difficult
to find the roots of a given generic polynomial, based on its coefficients alone.

To make things simpler, we can consider an intermediate covering Rootsn → P̃olyn → Polyn where

P̃olyn denotes all pairs (p, λ) where p is a polynomial and λ is one of its roots, and the map from
Rootsn equips the polynomial with whichever root is in the first coordinate, i.e., sends the tuple

(r1, ..., rn) to ((−
∑
ri,

∑
rirj , ..., (−1)nr1...rn), r1). The map P̃olyn → Polyn where one simply for-

gets the root is a n-sheeted branched covering, where the n points in a generic fiber are precisely
the n distinct roots.

Although generally we may not be able to find a global section, we may still be able to express the
solutions of a polynomial in terms of radicals of the coefficients of the polynomial. This would be
equivalent to finding a tower of branched coverings of our given branched cover, such that we know
roughly that each piece in the tower behaves “like” the map z 7→ zd above. We would formalize
this in the sense of pullbacks of branched coverings. This motivates the following definition:

Definition. We say that we can solve an arbitrary degree n polynomial in radicals if there is a
tower of branched covers Xr → ...→ X0 ⊂ Polyn such that X0 is open and dense, and Xr → Polyn

factors through a branched covering Xr → P̃olyn and where each Xi+1 → Xi is a pullback from a

branched covering CP1 z 7→zdi−−−−→ CP1, with the Xi’s complex algebraic varieties.

The fact that we are pulling back from CP1, a 1-dimensional complex variety, means solving by
radicals is a process involving only 1 parameter at a time.
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Example. Let us construct such a tower for P̃oly2 → Poly2. Let X0 = Poly2 and let X1 =
{(b, c, δ) | b2 − 4c = δ2} ⊂ C3. Then we have

X1 P̃oly2

X0 = Poly2

where the horizontal arrow sends (b, c, δ) to ((b, c), (−b+ δ)/2) and the diagonal arrow sends (b, c, δ)
to (b, c). We also have that

X1 CP1

X0 CP1

is a pullback diagram, where the vertical map on the right is the branched cover z 7→ z2 and the
map on the left is the diagonal map above. The top horizontal map sends (b, c, δ) to δ and the
bottom horizontal map sends (b, c) to b2 − 4c so that the whole diagram commutes. We have just
proved

Theorem. (Babylonians) There is a formula in radicals for the roots of a general quadratic.

The above definition should remind you of the situation in Galois theory where one wants to find a
tower of field extensions in order to say that an element is expressible in radicals. In fact, we have
the following dictionary between topology/geometry and algebra:

Top/Geo Alg

birational class of X ' class of C(X)
dimension of X trdegCC(X)

branched cover Y → X field extension C(Y )/C(X)

Mon(Y
normal−−−−→ X) Gal(C(Y )/C(X))

In other words, we may apply Galois theory to sufficiently nice branched coverings. The above
dictionary implies that a tower of branched coverings is equivalent to a tower of subgroups of the
monodromy group. We may then use the monodromy group to deduce whether certain branched
coverings have intermediate coverings that behave like radical covers, and therefore deduce whether
certain polynomials have roots expressible in radicals of their coefficients.

Theorem. (Cardano, del Ferro, Tartaglia, 1545) There is a formula in radicals for the roots of a
general cubic.

Exercise. Construct a sequence of towers for Cardano’s cubic formula.

Theorem. (Cardano, Ferrari, 1545) There is a formula in radicals for the roots of a general quartic.

Theorem. (Abel, Ruffini, 1824) There is no formula in radicals for the roots of a general quintic
or higher degree polynomial.
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Remark. Arnol’d has a proof of the above statement using the perspective of branched coverings
above. In it, he supposes for contradiction that a tower of branched covers exist. He then realizes
that the monodromy group of the last cover over the base is solvable and surjects onto the mon-

odromy group of P̃olyn → Polyn. However, the monodromy representation of this cover is a map
π1(Polyn −∆n)→ Sn where ∆n is the discriminant locus. We have that Polyn −∆n is homeomor-
phic to UConfn the configuration space of n unordered points in C which is a K(Bn, 1) where Bn

is the Braid group on n strands; the monodromy representation is exactly the map that sends a
strand to the induced permutation on the n points, which is surjective. The monodromy group is
then exactly Sn. But this is not solvable for n ≥ 5.

The above results are all classical well-known theorems that most of us encounter in undergraduate
algebra classes. However what is less well-known is the following:

Theorem. (Bring, 1786) There is a formula for the roots of a general quintic, in square roots, cube
roots, fifth roots, and the Bring radical defined as br

√
a = {z | z5 + az + 1 = 0}.

The Bring radical is an example of an algebraic function. An algebraic function of degree n in m
variables is an assignment Φ(a1, ..., am) = {z ∈ C|p0(~a)zn + ...+ pn(~a) = 0} where the pi are poly-
nomials in the variables aj . Note that the degree refers to the power of z. One should think of these
algebraic functions as multi-valued functions similar to radicals, with the values being unordered.

Example. The Bring radical above. Radicals and d-th roots. These are algebraic functions in
1 variable.

Example. The universal quadratic U2(a, b, c) = {z | az2 + bz + c = 0} is an algebraic function
in 3 variables. The universal n-valued polynomial Un(a0, ..., an) = {z | anzn + ... + a0 = 0} is an
algebraic function in (n+ 1)-variables.

In other words, we can move away from the solvable/unsolvable-in-radicals dichotomy and ex-
tend the question of expressing roots in radicals to general algebraic functions. Following Bring, we
can now ask the following question: how hard is it to obtain a formula in algebraic functions for
the roots of a polynomial? One can formalize this as asking, how many variables in the algebraic
functions does one need? Mimicking the definition for solving in radicals, we come to the following
concept introduced by Brauer in 1975.

Resolvent degree

Definition. The resolvent degree of a branched cover Y → X denoted RD(Y → X) is the minimum
d such that there is a tower of branched covers Xr → ... → X0 ⊂ X such that Xr → X factors
through a branched cover Xr → Y and such that, for each i we have Xi → Xi−1 is a pullback from
a branched cover Z̃i → Zi with dimension Zi at most d.

The resolvent degree of the branched cover of the space of polynomials can be interpreted as the
minimum d for which there is a formula in algebraic functions of at most d variables for the roots
of a polynomial in terms of its coefficients.

Theorem. (Hamilton, Tschirnhaus, 1836) Any degree 6 polynomial can be reduced via radicals to
Q(z) = z6 + az2 + bz+ 1. Any degree 7 polynomial can be reduced via radicals to Q(z) = z7 + az3 +
bz2+cz+1. Any degree 8 polynomial can be reduced via radicals to Q(z) = z8+az4+bz3+cz2+dz+1.
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Transformations of coordinates that reduce the number of parameters of a polynomial are generally
called Tschirnhaus transformations. The above theorem then implies that the number of variables
needed to express roots in algebraic functions for a degree 6, 7, 8 resp. polynomial is at most 2,
3, and 4 respectively. Hilbert conjectures one cannot do better, which is what precisely motivated
Brauer in defining resolvent degree in the first place.

Conjecture. (Hilbert’s sextic conjecture) RD(P̃oly6 → Poly6) = 2.

Conjecture. (Hilbert’s 13th problem) RD(P̃oly7 → Poly7) = 3.

Conjecture. (Hilbert’s octic conjecture) RD(P̃oly8 → Poly8) = 4.

Historically, much work has been done on finding upper bounds on resolvent degree, including theo-
rems of Tschirnhaus (1683), Bring (1786), Hamilton (1836), Sylvester (1887), Klein (1888), Hilbert
(1927), and Segre (1945). There are currently no known lower bounds. The best general upper
bound was given by Brauer, who proved for n ≥ 4 and fixed r that resolvent degree of the branched
cover for degree n polynomials is ≤ n− r for n ≥ (r − 1)! + 1.

Note that resolvent degree was defined for arbitrary branched covers. Besides being used to study
the reduction of parameters problem, one can also apply it to certain incidence varieties from alge-
braic geometry.

Example. Consider H3,3 the parameter space of cubic surfaces in P3 and H3,3(1) the space of
pairs (S,L) where S is a smooth cubic surface and L ⊂ S is a line i.e., the zero set of two linear
functions in two variables. We can consider the map H3,3(1)→ H3,3 that simply forgets the line on
the cubic surface. One checks that this map is a proper smooth submersion away from the singular
cubics, and therefore, by Ehresmann’s lemma, is a locally trivial fibration. This immediately implies
that every smooth cubic is diffeomorphic to one another and that the above is a branched covering,
with branched locus the union of the discriminant loci in each variable. Considering the Fermat
cubic X3 + Y 3 +W 3 + Z3, we can count that there are exactly 27 lines on it, and thus exactly 27
lines on a smooth cubic surface. However, given a smooth cubic surface, can one find an explicit
line on it? That is, given the polynomial that determines the cubic surface, can one find a formula
in algebraic functions of its coefficients for the polynomial equations that determine the lines?

Theorem. (Harris) There is no formula in radicals in the coefficients of a smooth cubic S for a
line on it. Given 3 skew (disjoint) lines L1, L2, L3 ⊂ S, there is a formula in radicals for the other
24, in terms of coefficients of S and coefficients of the three lines. Given only 2 skew lines, there is
no such formula in radicals.

Proof sketch. We consider the tower of branched covers H3,3(27) → Hskew
3,3 (3) → Hskew

3,3 (2) →
H3,3(1) → H3,3 and only somewhat sketch the first statement. It turns out that the monodromy
group of the coverH3,3(1)→ H3,3 is W (E6) the Weyl group of E6, which is known to be not solvable.

The resolvent degree of H3,3(1)→ H3,3 is not known. However, what is known is the following:

Theorem. (Farb-Wolfson) RD(H3,3(27) → H3,3(1)) = RD(P̃oly5 → Poly5) = 1. Moreover
RD(H3,3(27) → H3,3) = RD(H4,2(28) → H4,2(1)) where H4,2 is the parameter space of smooth
planar quartics in CP2 and the incidence varieties are those planar quartics with bitangents equipped
(i.e., lines that are tangent to the planar quartic at two points).
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To conclude, the notion of resolvent degree unifies a vast number of algebro-geometric problems un-
der one general concept. It allows one to formalize how difficult it is to find a formula for a solution
to an equation in algebraic functions, and can be viewed through the lens of topology, enumerative
algebraic geometry, and Galois theory, and there are still many questions left unanswered.

Some open questions include:

Conjecture. Prove that RD(H3,3(1)→ H3,3) = 3.

Question. From Harris’s theorem above, there is a formula in radicals for 27 lines on a smooth
cubic given 3 skew lines. Write down this formula.

Conjecture. Prove that resolvent degree for the branched cover of polynomials equipped with a root
over the space of polynomials goes to ∞ as n→∞.

Conjecture. (Arnol’d-Shimura) Give a single example of a branched cover whose resolvent degree
is strictly bigger than 1.
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