MAT511 homework, due Nov 18, 2009

(1) Give a proof using the Pigeonhole Principle: If five points are in or on a square of side length 1, then at least two points are no farther apart than $\frac{\sqrt{2}}{2}$. Start by drawing a picture.
(2) Define B^{A} to be the set of all functions from A to B. Show that if A and B are finite, then B^{A} is finite. What is the cardinality of B^{A} in terms of the cardinalities of A and B ?
(3) Prove that the two intervals $(0,1)$ and $(-47,47)$ have the same cardinality.
(4) Prove that the interval $(0,1)$ has the same cardinality as the set \mathbf{R} of real numbers.
(5) Prove that if A is an infinite set and $A \subseteq B$, then B is an infinite set.
(6) Let $3 \mathbf{N}$ be the set of natural numbers that are multiples of 3 , that is $3 \mathbf{N}=\{3,6,9,12 \ldots\}$. Prove that $\mathbf{N}-3 \mathbf{N}$ is a countably infinite set.
(7) Show that there is always a one-one correspondence between a set A and a subset of its power set $\mathcal{P}(A)$.
(8) Reproduce the proof given in class that there can never be a one-one correspondence between A and $\mathcal{P}(A)$.

