MAT511 homework, due Nov 11, 2009

(1) For each of these functions $f(x)$ find the maximum domain of definition $\mathcal{D} \subset \mathbf{R}$. Then restrict the domain to \mathcal{D}^{\prime} on which f is one-one (choose \mathcal{D}^{\prime} as large as possible. What is the range \mathcal{R} of the restricted function? Give a formula for the inverse function $g(y)$ mapping \mathcal{R} to \mathcal{D}^{\prime}.
(a) $f(x)=\sqrt{x^{2}-4}$
(b) $f(x)=\frac{1}{x^{2}+3}$
(c) $f(x)=\sqrt{x^{2}-x}$
(2) List the first five terms of the sequence $(n=1,2,3, \ldots)$
(a) $x_{n}=\frac{1}{n!}$
(b) $x_{n}=\frac{\cos (n)}{n}$
(c) $x_{n}=1-\frac{1}{2^{n}}$
(3) Prove carefully that sequences (1) and (2) converge to zero (using the definition) and that (3) converges to 1 .
(4) Prove carefully that if x_{n} and y_{n} are sequences $(n=1,2,3, \ldots)$ which converge to limits L and M, then the sequence $x_{n}+y_{n}$ converges to $L+M$. You must use the definition of "converges to limit"!
(5) Give an example of sequences x_{n} and $y_{n}(n=1,2,3, \ldots)$ which do not converge, but such that the sum $x_{n}+y_{n}$ converges.

