MAT511 homework, due Nov 11, 2009

(1) For each of these functions f(x) find the maximum domain of definition $\mathcal{D} \subset \mathbf{R}$. Then restrict the domain to \mathcal{D}' on which f is one-one (choose \mathcal{D}' as large as possible. What is the range \mathcal{R} of the restricted function? Give a formula for the inverse function g(y) mapping \mathcal{R} to \mathcal{D}' .

(a)
$$f(x) = \sqrt{x^2 - 4}$$

(b) $f(x) = \frac{1}{2}$

(b)
$$f(x) = \frac{1}{x^2 + 3}$$

(c)
$$f(x) = \sqrt{x^2 - x}$$

(2) List the first five terms of the sequence (n = 1, 2, 3, ...)

(a)
$$x_n = \frac{1}{n!}$$

(b) $x_n = \frac{\cos(n)}{1}$

(b)
$$x_n \equiv \frac{1}{n}$$

- (c) $x_n = 1 \frac{1}{2^n}$
- (3) Prove carefully that sequences (1) and (2) converge to zero (using the definition) and that (3) converges to 1.
- (4) Prove carefully that if x_n and y_n are sequences (n = 1, 2, 3, ...) which converge to limits L and M, then the sequence $x_n + y_n$ converges to L + M. You must use the definition of "converges to limit"!
- (5) Give an example of sequences x_n and y_n (n = 1, 2, 3, ...) which do not converge, but such that the sum $x_n + y_n$ converges.