MAT511 homework, due Nov 4, 2009

(1) Suppose that A is a finite set with m elements, and B is a finite set with n elements.
(a) Find the total number of functions from A to B if

- $m=n$
- $m>n$
- $m<n$
(b) Find the number of one-to-one functions from A to B if
- $m=n$
- $m>n$
- $m<n$
(2) Give an example of functions $f: A \rightarrow B$ and $g: B \rightarrow C$, (be sure to specify domains and ranges) for which
(a) g is onto C, but $g \circ f$ is not onto C.
(b) $g \circ f$ is onto C, but f is not onto B.
(c) g is one-to-one, but $g \circ f$ is not one-to-one.
(d) $g \circ f$ is one-to-one but g is not one-to-one.
(3) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=x^{2}+1$. Find the following (remember that in this context $[a, b]$ is the set $\{x \in \mathbf{R} \mid a \leq x \leq$ $b\}$).
(a) $f([1,2])$
(b) $f([-1,2])$
(c) $f^{-1}([5,10])$
(d) $f^{-1}([-1,5] \cup[17,26])$
(4) Let $f: A \rightarrow B$, and $D \subseteq A, E \subseteq B$.
(a) Prove that $D \subseteq f^{-1}(f(D))$. Also, Give an example where $D \neq f^{-1}(f(D))$.
(b) Prove that $f\left(f^{-1}(E)\right) \subseteq E$. Also, Give an example where $f\left(f^{-1}(E)\right) \neq E$.
(5) (a) Suppose $y=f(x)=3 x-47$. Write x as a function of y.
(b) Suppose $y=f(x)=\frac{3 x-2}{5 x+7}$. What is the domain of f ? Write $x=g(y)$ as a function of y. What is the domain of g ? Check that the domain of g is the range of f, and vice-versa.

