- (1) Suppose that A is a finite set with m elements, and B is a finite set with n elements.
 - (a) Find the total number of functions from A to B if
 - m = n
 - m > n
 - m < n
 - (b) Find the number of one-to-one functions from A to B if
 - m = n
 - m > n
 - m < n
- (2) Give an example of functions $f: A \to B$ and $g: B \to C$, (be sure to specify domains and ranges) for which
 - (a) g is onto C, but $g \circ f$ is not onto C.
 - (b) $g \circ f$ is onto C, but f is not onto B.
 - (c) g is one-to-one, but $g \circ f$ is not one-to-one.
 - (d) $g \circ f$ is one-to-one but g is not one-to-one.
- (3) Let $f: \mathbf{R} \to \mathbf{R}$ be given by $f(x) = x^2 + 1$. Find the following (remember that in this context [a, b] is the set $\{x \in \mathbf{R} | a \leq x \leq x\}$ $b\}).$
 - (a) f([1,2])
 - (b) f([-1,2])
 - (c) $f^{-1}([5, 10])$
 - (d) $f^{-1}([-1,5] \cup [17,26])$
- (4) Let $f : A \to B$, and $D \subseteq A, E \subseteq B$.
 - (a) Prove that $D \subseteq f^{-1}(f(D))$. Also, Give an example where $D \neq f^{-1}(f(D)).$
 - (b) Prove that $f(f^{-1}(E)) \subseteq E$. Also, Give an example where $f(f^{-1}(E)) \neq E.$
- (5) (a) Suppose y = f(x) = 3x 47. Write x as a function of y. (b) Suppose $y = f(x) = \frac{3x-2}{5x+7}$. What is the domain of f? Write x = q(y) as a function of y. What is the domain of g? Check that the domain of g is the range of f, and vice-versa.