(1) Prove carefully by induction that the binomial coefficients

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

satisfy

$$\left(\begin{array}{c} n+1\\k\end{array}\right) = \left(\begin{array}{c} n\\k\end{array}\right) + \left(\begin{array}{c} n\\k+1\end{array}\right).$$

(Remember the convention 0! = 1! = 1.

- (2) Current (non-vanity) NYS license plates have the format "ABC 1234" with letters and numbers. How many possible different plates of this format can there be? Suppose each of the 7 positions could hold either a letter or a number. Then how many could there be?
- (3) Let A and B be nonempty sets. Prove that $A \times B = B \times A$ if and only if A = B. What if one of A or B is empty?
- (4) For each of the relations below, indicate whether it is reflexive, symmetric, or transitive. Justify your answer.
 - (a) \leq on the set **N**.
 - (b) $\perp = \{(l, m) \text{ such that } l \text{ and } m \text{ are lines, with } l \text{ perpendicular to } m\}.$
 - (c) ~ on $\mathbf{R} \times \mathbf{R}$, where $(x, y) \sim (z, w)$ if $x + z \leq y + w$.
 - (d) \smile on $\mathbf{R} \times \mathbf{R}$, where $(x, y) \smile (z, w)$ if $x + y \le z + w$.
 - (e) \Box on $\mathbf{R} \times \mathbf{R}$, where $(x, y) \Box (z, w)$ if x + z = y + w.
- (5) Prove that if R is a symmetric, transitive relation on a set A, and the domain of R is A, then R is reflexive on A.
- (6) Consider the relations \sim and \Box on **N** defined by $x \sim y$ iff x + y is even, and $x \Box y$ iff x + y is a multiple of 3. Prove that \sim is an equivalence relation, and that \Box is not.
- (7) For each $a \in \mathbf{R}$, let $P_a = \{(x, y) \in \mathbf{R} \times \mathbf{R} \text{ such that } y = a x^2\}.$
 - (a) Sketch the graph of P_{-2} , P_0 , and P_1 .
 - (b) Prove that $\{P_a \text{ such that } a \in \mathbf{R}\}$ forms a partition of $\mathbf{R} \times \mathbf{R}$.
 - (c) Describe the equivalence relation associated with this partition.