MAT511 homework, due Oct 21, 2009

(1) Prove carefully by induction that the binomial coefficients

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

satisfy

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k+1} .
$$

(Remember the convention $0!=1!=1$.
(2) Current (non-vanity) NYS license plates have the format "ABC 1234 " with letters and numbers. How many possible different plates of this format can there be? Suppose each of the 7 positions could hold either a letter or a number. Then how many could there be?
(3) Let A and B be nonempty sets. Prove that $A \times B=B \times A$ if and only if $A=B$. What if one of A or B is empty?
(4) For each of the relations below, indicate whether it is reflexive, symmetric, or transitive. Justify your answer.
(a) \leq on the set \mathbf{N}.
(b) $\perp=\{(l, m)$ such that l and m are lines, with l perpendicular to $m\}$.
(c) \sim on $\mathbf{R} \times \mathbf{R}$, where $(x, y) \sim(z, w)$ if $x+z \leq y+w$.
(d) \smile on $\mathbf{R} \times \mathbf{R}$, where $(x, y) \smile(z, w)$ if $x+y \leq z+w$.
(e) \square on $\mathbf{R} \times \mathbf{R}$, where $(x, y) \square(z, w)$ if $x+z=y+w$.
(5) Prove that if R is a symmetric, transitive relation on a set A, and the domain of R is A, then R is reflexive on A.
(6) Consider the relations \sim and \square on \mathbf{N} defined by $x \sim y$ iff $x+y$ is even, and $x \square y$ iff $x+y$ is a multiple of 3 . Prove that \sim is an equivalence relation, and that \square is not.
(7) For each $a \in \mathbf{R}$, let $P_{a}=\left\{(x, y) \in \mathbf{R} \times \mathbf{R}\right.$ such that $\left.y=a-x^{2}\right\}$.
(a) Sketch the graph of P_{-2}, P_{0}, and P_{1}.
(b) Prove that $\left\{P_{a}\right.$ such that $\left.a \in \mathbf{R}\right\}$ forms a partition of $\mathbf{R} \times$ R.
(c) Describe the equivalence relation associated with this partition.

