MAT511 homework, due Dec 9, 2009
(1) Give a careful proof of the proposition:

If A is an infinite set, and X is any other set disjoint from A, then $A \cup X$ is infinite.
[You must exhibit a 1-1 correspondence between $A \cup X$ and a proper subset of $A \cup X$.]
(2) Give a careful proof of the proposition:

If A is denumerable and $B \sim A$, then B is denumerable.
[You must exhibit an explicit 1-1 correspondence $\mathbf{N} \rightarrow B$.]
(3) Give a careful proof of the proposition:

If A is a finite set, then there does not exist a 1-1 correspondence f between A and a proper subset of A.
[You must use the definition of finite (p.224) and show that the existence of f would imply the existence of a 1-1 correspondence $\mathbf{N}_{m} \rightarrow \mathbf{N}_{n}$ for some $m \neq n$, and show why this is impossible.]
(4) Give a careful proof of the proposition:

The set \mathbf{R} of real numbers has the same cardinality as the set $\mathbf{R}-0$ of nonzero real numbers.
[We did this in class. Write each of them as a union of halfopen intervals, and set up an explicit 1-1 correspondence between pairs of intervals, one in R, one in $\mathbf{R}-0$.]

