Stony Brook University MAT 341 Fall 2011
Homework Solutions, Chapter 2 (corrected typos in §2.3 #8, 10/3,
4:30 PM)

§2.2 #5 Find the steady-state solution of the problem
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if the conductivity varies in a linear fashion with z: k(x) = k¢ + Bz,
where k¢ and [ are constants.

SOLUTION: The steady-state solution v(x) satisfies (see p. 136)
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for some constant C'. Using x(x) = ko + Sz this gives
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Integrating both sides gives

v(z) = gln(no + pzx)+ D

for some other constant D. The boundary conditions for u(z,t) give
boundary conditions for v(z): v(0) = Ty, v(a) = T;. These will deter-
mine the constants C' and D:

T() = gln(lig) + D

T, = gln(mo + fa) + D.



Subtracting the two equations gives
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and then from the first equation
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D = T() — gln(fio) =

§2.2 # 7 Find the steady-state solution of this problem where r is a constant
that represents heat generation.
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SOLUTION: The steady-state solution v(x) must satisfy (see p. 136)
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The differential equation, equivalent to 32712) = —r, has general solution

v(x) = —77“$2 +Cx+ D

where C, D are the constants of integration. The boundary conditions
determine C' and D:

0=—(a)=—-ra+C soC =ra.



§2.3 4 4

§2.3 # 8

The problem here is locating the definitions of ¢1, ¢o, p3. They are
on page 144 near the bottom. ¢,(x) = sin(A,z). The definition of
An = nm/a is just above on the same page.

Solve the problem
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SOLUTION: We follow the analysis on page 143-144 to conclude that
the equation and boundary conditions admit product solutions
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Since the equation is linear and the boundary conditions are homoge-
neous any linear combination of product solutions
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will satisfy the equation and the boundary conditions. We can choose
the coefficients b,, to match the initial conditions: at ¢t = 0 we need
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I.e. the b,, are the coefficients of the Fourier sine series of the function
on the right, so we know how to calculate them, following Theorem 2

on page 60:
2

b, = — /a g(x)sin n"z dz.
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We can save some effort by noting that g(x) is symmetrical about z = §
(check that QTO(E_w) = QTO(a_a(g”))). Now sinnZz is anti-symmetrical
about r = § when n is even, and symmetrical about x = ¢ when n is

odd. This implies that b, = 0 if n is even, and that
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when n is odd. So for odd n:
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This should be a familiar integration by parts by now:
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The first term is zero when z = 0 and also when z = g, since it has

as a factor the cosine of an odd multiple of 7. Integrating the second
term gives

The sine of an odd multiple n of 7 is 1 for n = 1,5,9,... and —1 for
n=3,7,11,... ie. itis (=1)7 if n = 2j+1. So we can write our initial
condition as

_ 81 > 1

g(x) = > (—1)j—sinng:€,

2 2
T n=2j+1,j=0 n

and the solution to our problem is
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§2.4 #3 This is an insulated bar problem:
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SOLUTION: The analysis on pages 151 and 152 identifies this as prob-
lem which can be solved by a sum of product solutions of the form
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This involves calculating the Fourier cosine series of g(z), which we can
do following Theorem 2 page 30:
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We can save some effort by observing as in §2.3 #8 that g(z) is symmet-

ric about z = 7; in this case cosnZx is symmetric about x = 3 when
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n is even, and antisymmetric when n is odd. So for n odd, a,, = 0, and

for n even,

a, = — cosn—x dxr = — rcosn—zx dr.
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This involves the usual kind of integration by parts:
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The first term is zero at both endpoints, since n is even. The second

term integrates to
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If n is even, say n = 2j, then cosng = cos jm and is 1 if j is even, —1
if 7 is odd. So our integral is
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and the solution to the problem is
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