Stony Brook University MAT 341 Fall 2011
Homework Solutions, Section 1.2, Problems 1, 7, 11

§1.2 # 1 Find the Fourier series of the following functions, and sketch the graph
of their periodic extensions for at least two periods.

a. f(z) =|z|, —-l<z<1

SOLUTION: f(z) = |z| is an even function. Consequently its
Fourier series only has cosines, and the integrals are

! /a f(x) dx:/olf(x) dx

ag = —
2a J-a

1 a 1
a, = 7/ f(x) cosn%x dx = 2/ f(z) cosnrx dx
0

a J—a
since here a = 1, using Theorem 2, p. 60.

Between 0 and 1, |z| = z, so

1

_/1 d _1 2’1_,
ag = O:I: 33—2:1: 0= 5

1
a, = 2/ zcosnmx dx.
0

We integrate by parts taking v = x and dv = cosnmx dx, so
v = % sinnmx and du = dx. Consequently

1

1 . 1 . 2 :
an = 2[x— sinnmz|) — —/ sinnme dr] = —— | sinnmzx de,
nm nw Jo nw Jo

since the first term is zero at x = 0 and z = 1. The anti-derivative

of sinnmx is —% COSNTX, SO

1
an = cos nmwxly.
n?m? 0

—1 ifnisodd
1 if nis even

I

Now cos0 =1 and cosnm = {

—— 1if nis odd
Ay = nems .
0 if niseven

o272 1—1 ifniseven

2 {—1—1 if n is odd _{



and the Fourier series is

1 4 &1
f(z) ~ ] > 3 CoSnNTL.
n chld

f(x)

X
0 1 2 3 4
_ periodic
f9=1x], -L<x<l1 extension

-1 —-2<x<0

f(x):{ 1 O<ze<?2

SOLUTION: This is an odd function. Consequently only sines will
appear in the Fourier series, and the coefficients are

2 [a T 2 s
bn:—/ inn"z d :/ innZe d
) f(:r)smnax v= ) f(x)sanac x
since here a = 2, and using Theorem 2, p. 60.

Since f(x) =1 on (0,2), the integral becomes

2w 2 T 9
b, = | sinn—-x dr = —— cosn—zx|;.
0 2 nm 2

—1 ifnis odd
1 ifniseven

2 o . . i . .
bn:_({ 11 if n is odd }_1):{m if n is odd

if n is even 0 if nis even

Since cos(0) = 1 and cosnm = { we get



The Fourier series is then

4 X1
fl)y~= > — sinnga:.
quc}dn

-2 0 2 4 6 8
— 1 -

f(x)=1, 0<x<2 periodic
=.1 -2<x<0 extension

§1.2 # 7 Find the Fourier series of the functions:
a. f(z)=2, —-1l<z<l1

SOLUTION: This is an odd function, so using Theorem 2 p. 60
only the sines will have non-zero coefficients, and

2 a . T 1 .
b, = 7/ f(x)sinn—z dx = 2/ rsinnrr dr
a o a 0

since here « = 1 and f(x) = x. Integrate by parts, with v = =
and dv = sinnrz dx, so du = dr and v = —-= cosnmx. We get

nm

x 1/t
by, = 2[—— cosnrx|y + —/ cosnmx dr|.
nm nm Jo

In this case the integral is zero since sinnmx equals zero when
=1 and when x = 0. Also = cosnmz is zero at x = 0.

So

2 e
—2 _2,{—1 if n is odd n if n is odd

b, = —cosnm = — e =
" 1 if nis even L

nmw nmw ) )
if n is even



and the Fourier series is

Cfle)=1, —-2<z<2

SOLUTION: This function is constant, so it is even, but we can
calculate the Fourier coefficients directly, and they do not depend

on a: |
ap = — 1-de=1
2a —a

1 fe U la . =
a, = —/ cosn—x dr = ——sinn—z|*, =0
al-a a anm a

since sinn’a = sinn®(—a) = 0.
a a

1 fe T 1—a s
b, = f/ sinn—z de = ——cosn—zx|*, =0
al-a a anm a

since cosn’a = cosn’(—a). So the Fourier series is just f(z) ~ 1.
~1 1
1 3

SOLUTION: Look at the graph of f. If we shift it by % to the left

it becomes the even function g(z) = f(z + 1).

1 T+3 S <z+3<;
9@)—““2)—{ 1 @il f<oqprcs

or

l_2» 0<z<1

r+L —1<x<0
g(x) = { 2
2

We first calculate the Fourier series for g. It is an even function
with a = 1, so (using Theorem 2 on p. 60) the b, are zero and

1 11
a0:/g(x)dx:/(f—x)dx20
0 0o 2
1 1 /1 1
ay, = 2/ g(x)cosnmx de = 2[5/ cosnmx dx —/ xcosnmx dxl
0 0 0
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As we have calculated in an earlier problem, [j cosnmz dz = 0.
- 1 —2 if n is odd

Also in problem 1 we calculated 2 [y x cosnmax dx = »7™ .. .
0 ifniseven

So the Fourier coefficients for g(z) are

1 22 lfn iS Odd
Gy = —2/ rcosnmx dr =
0

0 if nis even

and the Fourier series is

4 = 1
g(x) ~ = > — Cos T
T n(z(%dn

Now we use this series to get the Fourier series for f:

flz) = 9@—5) ~ 3 Z 2 Cosmr(:v—§) =3 Z 2 cos(mm—ng),

If n is odd cos(y — %) = *siny, plus if n = 1,5,9, ..., minus if
n=3,7,11,.... So:

4 1 1 1
f(z) ~ P(sinm — §sin3x + %Sin&r — Esin Tx + etc.)

or
P

§1.2 # 11 Find the Fourier sine and cosine series of the functions:

a. f(x) =1, O<z<a

SOLUTION: Cosine series. The even extension of f is the con-
stant function f(z) = 1 on (—a,a). As calculated in problem
7b, the only nonzero coefficient is ag = 1. The cosine series is

f(z) ~ 1.



Sine series. The odd extension of f is the “square wave”

-1 —a<xz<0

f(x):{ 1 I<zx<a

For an odd function (Theorem 2 p.60) the a, = 0 and b, =
2 [¢sinnZx dx since f(z) = 1 on that interval. As in problem
7b, this integral is

2 —a T o_ —2] =2 ifnisodd L if nis odd
0 if nis even

0 if nis even

and the Fourier sine series is

f(:v)wé i lsinnzac.

T o (11 d n a
1
X
-a 0 a 2a 3a 4a
| - 1
even odd
f(x)=1, 0<x<a extension extension

b. f(z) ==, O<z<a

SOLUTION: Cosine series. The even extension of f is

fz) =

—r —a<z<0
=lz|, —a<z<a

x <z <a



Using Theorem 2 on p.60 as usual, the b, coefficients are zero,

1 fo a
—_ — d —_ —
Qo /0 T dx 5

a

2 [o s
a, =— | xcosn—x dx.
0 a

The a, integral is done by parts as usual, with v = x and dv =
cosnZx dx, so v =-2sinn”x, du = dr and
a nm a

a . 2

a a : ™ a
a, =x —sinn—z|j — — [ sinn—x dr = 55 COsn—xlg
nmw a a n?m a

since the first term is zero at both ends, and
ay = nzﬂQ (cos(nm) — 1) =
The Fourier cosine series is:

a 2a®> &1 T

flo)~ 5 == Y —cosn—zx
2 s
n odd
n=1

Sine series. Since f(z) = x is itself an odd function, the function
f(z) =2, —a <z < aistheodd extension of f(z) =2z, 0<
x < a. The Fourier series of this function has no cosine terms,
and the sine coefficients are given (see Theorem 2 page 60) by

2 fa us
b, = f/ rsinn—x dx.
aJo a
We have calculated this before when a = 1, in problem 7a. Here
again we integrate by parts, with v = x and dv = sinnZx dx, so
v=—2cosnir and du = dx. This gives

2. — a [® T
b, = *[71‘ cosn— :L'|0 + — | cosn—x dzx]
a nm a nm Jo a

The integral gives zero since sinn”z is 0 when z = 0 and when

T = a. Also T cosnt ~xis When x = 0, so what is left is ﬁ COS N,

which is 2% 1f n is odd and 1f n 1s even.



The Fourier sine series is then

2a & 1 T
~ —)" ! Zsinn—z.
f(z) - nz::l( ) —sinn_x

c. f(z)=sinz, 0<z<l.

a
I'4 / X
-a 0 a 2a 3a da
-a
even odd
f(x)=x, 0<x<a extension extension

SOLUTION: Cosine series. The even extension of f is

—sinzx —-1<z<0
f(x)—{ simz O<z<l1
(or f(x) =|sinz|, —1 <z <1). Using Theorem 2 on page 60,

the sine coefficients are all zero, and (here a = 1)

1
g = / sinz dz = 1 — cos 1 = 0.4596...
0

1
ap = 2/ sin x cosnmx dx.
0

Using the identity sin Acos B = (sin(A + B) + sin(A — B)) we
can rewrite the integral as

1 1
ay, = / sin(1 + nm)z dx +/ sin(1 — nm)x dx
0 0
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an cos(1 + nm)z|§ + . —— cos(1 —nm)z|}
—nm

- 14+ nm
1

- 1 — cos(1
1+n7r( cos(1l + nm)) + T —r

so a; = —.3473..., ay = —.0238..., ag = —.0350..., etc.

a, (1 —cos(1l —nm))

Sine series. The odd extension of f is the odd function f(z) =
sinz, — 1< x < 1. Using Theorem 2 on page 60, all the cosine
coefficients are zero, and the sine coefficients are (here a = 1)

1
b, = 2/ sinzsinnnz dx.
0

Here use the trigonometric identity sin Asin B = Z(cos(A — B) —

cos(A + B)) which gives

1
2

1 1
b, = / cos(1 — nm)x dx — / cos(1l + nm)x dx
0 0

b, = . sin(l — nm) — sin(1 + nm)

—nm 1+ nm

So by = .5960..., by = —.2748..., by = .1805..., etc.

LfSi n(1) = 0.8414..

even odd

f(x)=sin(x), 0 <x <1 extension extension




d. f(z)=sinz 0<z <.

SOLUTION. Cosine series. As in part c., the even extension is

f(z) =|sinz|, —m <z < m; the sine coefficients are all zero;
1 2
ap = — sinx dr = —
7 Jo T

2 ™
an:—/ sin x cos nx dzx.
m Jo

Notice that orthogonality does not apply since we are only in-
tegrating over half a period! Using the trigonometric identity
sin A cos B = 5(sin(A + B) + sin(4 — B)) as before,

1 /= 1
an:—/ sin(1 +n)zx d:U—i-f/ sin(l —n)z dx
7 Jo 7 Jo

a, = 1 cos(1 +n)zx|§ + 1= cos(1 —n)x|j
" wl+n O xl-n 0
When n is odd, cos(1 4+ n)m = cos(1 — n)m = cos 0 so both of the
terms give zero. When n is even, cos(1+n)m = cos(l —n)m = —1
> 1,2 2 4 1
an = —( )=—

1+4n 1—n T 1—n2

and the Fourier cosine series is

(e

2 4 & 1
fle)~=+= > ——cosnaz.
T Wneygenl—n

Sine series. This function is its own Fourier sine series: b; = 1
and all the other coeficients are zero.

10



5 6
even
extension

11

3.

odd
extension



