
MAT 320 Fall 2007 Review for Final

Note: Final is cumulative, so use the Midterm 2 Review and the Midterm 1
Practice Exam as well as the material below.

• Theorem: be able to apply

• Theorem: and know what goes into the proof

• Theorem: and be able to prove.

§7.1 Understand the parallelism between the definition of “f is Riemann
integrable on [a, b] with integral L” and, for example, “the sequence (an) is
convergent with limit L.” Basic: Theorem 7.1.2 The integral is unique.
Understand examples (c) and (d) on p.198, and understand the elementary
Theorem 7.1.4. Also Theorem 7.1.5, and review Example 7.1.6 (Thomae’s
function on [0, 1] is in R([0, 1]).

§7.2 Theorem 7.2.1 (Cauchy Criterion) important because it gives a definition
of “f integrable on [a, b]” that does not involve the value of

∫ b
a f . Theorem

7.2.3 - “Squeeze Theorem” used in proof of Theorem 7.2.6: If f is
continuous on [a, b] then f ∈ R([a, b]). Theorem 7.2.7: If f is monotone on
[a, b] then f ∈ R([a, b]). Theorem 7.2.8 (Additivity Theorem) etc.

§7.3 Theorem 7.3.1 Fundamental Theorem, I. Understand where all the hy-
potheses are used; in particular understand Example 7.3.2(e). Theorem

7.3.4: if f ∈ R([a, b]), then the function x 7→
∫ x
a f is continuous on [a, b]; ele-

mentary once you have 7.1.5 and additivity. Theorem 7.3.5 Fundamental

Theorem, II. Theorem 7.3.6 is a corollary.

§8.1 Definition 8.1.1: convergence (fn) → f is defined pointwise. Understand
the difference from Definition 8.1.4: uniform continuity (fn) ⇒ f (book uses
double arrow). Understand why the convergence in Examples 8.1.2 (a,b) is
not uniform. Understand the “uniform norm” ‖f−g‖D = supx∈D |f(x)−g(x)|
as a measure of the distance from f to g, and in terms of this norm understand
Theorem 8.1.10: a Cauchy criterion allowing us to prove (fn) converges
uniformly without a priori knowing what the limit is. Obviously useful.

§8.2 This section contains three important theorems describing how continu-
ity, integrability and differentiability behave under uniform limits. They are
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all proved by 3ε arguments. (Review the Examples 8.2.1 (a,b,c) to see what
can go wrong when convergence is not uniform). Theorem 8.2.2: a uniform
limit of continuous functions is continuous. Theorem 8.2.3 and Theorem

8.2.4.

§9.1 Understand that an infinite sum interpreted literally does not make
sense, and gets meaning as the limit of the sequence of partial sums, where it
is amenable to ε,N analysis. Go back to section 3.7 and make sure you know
how to show that

∑
∞

0 arn = a/(1− r) when |r| < 1, and diverges otherwise.
Know the “nth term test,” the comparison test and the Cauchy criterion for
series. You should know an elementary proof that

∑
∞

1

1

n
diverges and that

∑
∞

1 (−1)n+1 1

n
converges.

Know the definition of “
∑

xn is absolutely convergent,” and Theorem 9.1.2:
an absolutely convergent series is convergent. Understand the definition of
“rearrangement” (9.1.4) and the Rearrangement Theorem 9.1.5.

§9.2 Understand the Root Test, the Ratio Test and the Integral test -
remember that f must be positive and decreasing. Know the applications to
the “p-series”

∑
∞

n=1(1/n
p).

§9.3 Understand the Alternating Series Test.

§9.4 An infinite sum of functions
∑

∞

n=1 fn means the limit (if it exists) of
the sequence of partial-sum functions sn = f0 + · · · + fn. Similarly, the sum
∑

∞

n=1 fn converges uniformly to f if (sn) ⇒ f . The theorems of §8.2 translate
into theorems about series: Theorems 9.4.2, 9.4.3, 9.4.4; as does the Cauchy
Criterion (9.4.5); its corollary is the Weierstrass M-test 9.4.6.

There is a special and important analysis for power series. Know the ex-
treme examples

∑
∞

n=0 n!xn and
∑

∞

n=0(x
n/n!) and remember that

∑
∞

n=0 xn is
a geometric series converging for |x| < 1 and diverging otherwise. Under-
stand the definition of “limit superior” of a bounded sequence (bn), because
the radius of convergence R of the series

∑
∞

n=0 anxn is defined in terms of
lim sup(|an|

1/n) -essentially, its reciprocal: Definition 9.4.8 and Theorem

9.4.9. This theorem is overkill for series for which R = lim |an/an+1| exists:
then that R is the radius of convergence (Exercise 5).

Theorem 9.4.10: a power series
∑

anxn with radius of convergence R con-
verges uniformly on any closed, bounded interval K ⊂ (−R,R). Theorems

9.4.11 and 9.4.12 then follow from the theorems of section 8.2.
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