
MAT 320 Fall 2007 Review for Midterm 2

• Theorem: be able to apply

• Theorem: and know what goes into the proof

• Theorem: and be able to prove.

§3.3 Monotone Convergence Theorem. The least upper bound property
is crucial. Understand Example 3.3.3(b).

§3.4 Theorem 3.4.4. Monotone Subsequence Theorem, Bolzano- Weier-
strass Theorem (first proof).

§3.5 Know definition of Cauchy sequence. Cauchy Convergence Crite-
rion. Proof uses Lemma: a Cauchy sequence is bounded; then Bolzano-
Weierstrass to produce a candidate limit; then additional ε − δ argument to
show that limit works.

Know definition of contractive sequence. A contractive sequence is a
Cauchy sequence. Proof is straightforward once you use ak + ak+1 + · · ·+
ak+` = ak(1 − a`+1)/(1 − a).

§3.6 Know definition of properly divergent sequence.

§4.1 Know definition of cluster point and of limit of a function at a cluster
point. Theorem 4.1.5 (uniqueness of limit): basic and paradigmatic ε −
δ argument. Sequential Criterion for Limits (Theorem 4.1.8). Divergence
Criteria (4.1.9).

§4.2 Theorem 4.2.2 (f has a limit at c implies f is bounded on a neigh-
borhood of c). Nice ε − δ argument. Theorem 4.2.3 on limits of sums,
products, quotients. Theorem 4.2.6 on ≤-inequalities persisting to limits.
Theorem 4.2.9 (limx→c f(x) > 0 implies that c has a δ-neighborhood on
which f(x) > 0): useful theorem and illustrative proof.

§4.3 Not necessary to review for test. Check exercises.

§5.1 Know definition of “f continuous at c” in ε − δ terms. Understand Re-
mark after Theorem 5.1.2. Sequential Criterion for Continuity. Know
5.1.6 Examples (g) and (h).
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§5.2 Theorem 5.2.2 on sums, products and quotients of continuous functions.
Theorem 5.2.6 (if f continuous at c and g continuous at f(c) then g ◦ f
continuous at c): ε − δ − γ argument.

§5.3 has three important theorems. Theorem 5.3.2 (f continuous on [a, b]
implies f bounded): proof by contradiction. Use N to construct a sequence,
use Bolzano-Weierstrass to find a point where f is not continuous. Maxi-
mum Theorem 5.3.4 (f continuous on [a, b] has “a maximum”: a point
where it takes on its maximum value): use 5.3.2, the least upper bound axiom
and N to define a sequence, and Bolzano-Weierstrass to extract a convergent
subsequence; this identifies a candidate maximum; prove this point works.
Same for minimum. “Location of Roots” Theorem (f continuous on
[a, b] and f(a) < 0 < f(b) implies ∃c ∈ (a, b) with f(c) = 0): uses a bisection
argument and the Nested Intervals Property. Intermediate Value The-
orem is direct consequence. A consequence of these theorems is Theorem
5.3.9: if f is continuous on [a, b] then f([a, b]) is another closed interval.

§5.4 Know definition of uniform continuity and be able to show, for example,
that f(x) = 1/x on (0, 1], which is continuous, is not uniformly continuous
(this is discussed on pp. 136-137). Be familiar with the logical manipula-
tions to get Nonuniformity criteria 5.4.2 (ii) and (iii). Uniform Continuity
Theorem (f continuous on [a, b] is uniformly continuous): by contradiction
using (iii) and Bolzano- Weierstrass to locate a point at which you can show
f is not continuous.

Know definition of Lipschitz function. A Lipschitz function is uniformly
continuous.

Theorem 5.4.7 (a uniformly continuous function takes Cauchy sequences to
Cauchy sequences): nice combination of Cauchy criterion with ε−δ definition
of uniform continuity. Continuous Extension Theorem 5.4.8 is a consequence.

§5.6 Here we will consider functions defined on an interval I (without spec-
ifying which if any endpoints are included). Know distinction betweem “in-
creasing” and “strictly increasing,” etc. and also “monotone” and “strictly
monotone.” For f increasing, understand the definition of the jump jf (c)
of f at an interior point c of I (it’s limx→c+ f(x) − limx→c− f(x)) and the
definitions of jumps at endpoints. Theorem 5.6.3 (An increasing f is con-
tinuous on I iff jf(c) = 0 for every c ∈ I). And similarly for decreasing.
Theorem 5.6.4 (a monotonic function on an interval (a, b) has at most a
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countable number of points of discontinuity): at most 1 with jump ≥ (b−a),
at most 2 with jump ≥ (b − a)/2, etc., using 5.6.3. Continuous Inverse
Theorem 5.6.5 (a strictly monotone, continuous f defined on an interval I
has a continuous inverse g): first g exists because f strictly monotonic; g is
also (strictly) monotonic; a discontinuity of g would be a jump; this would
force I to be missing a point.

§6.1 Here again f is defined on an interval I. Know the definition of the
derivative of f at c ∈ I. Theorem 6.1.2 (f has a derivative at c implies f
continuous at c): directly from the definition, show limx→c(f(x) − f(c)) =
0. Theorem 6.1.3 - Differentiation Rules - pay attention to the quotient.
Carathéodory’s Theorem 6.1.5 (very useful in getting rid of trouble-
some denominators): proof is straightforward. Chain Rule 6.1.6 -use
Carathéodory. Derivative of Inverse - note requirement that f ′(c) 6= 0; use
Carathéodory.

§6.2 Interior Extremum Theorem 6.2.1 (if c is an interior extremum
of f , then if f ′(c) exists, it is 0): straightforward proof by contradiction,
using definition of derivative. Rolle’s Theorem 6.2.3 and Mean Value
Theorem 6.2.4 both for f continuous on [a, b] and differentiable on (a, b).
RT: if f(a) = f(b) then there exists c ∈ (a, b) with f ′(c) = 0. Use continuity
and Maximum Theorem to find an extremum; show it must be interior; apply
6.2.1. MVT: there exists c ∈ (a, b) with f ′(c) = (f(b)−f(a))/(b−a). Cook up
a function expressing the difference between f and the straight-line function
from (a, f(a)) to (b, f(b)), and apply Rolle’s Theorem. Theorems 6.2.5 and
6.2.7 (with same hypotheses: f ′(x) = 0 for all a < x < b iff f is constant;
f ′(x) ≥ 0 for all a < x < b iff f is increasing; f ′(x) ≤ 0 for all a < x < b iff f
is decreasing). Directly from MVT and definition of derivative. Note remark
on p. 171 about f(x) = x3, etc. Darboux’s Theorem 6.2.12 (f differentiable
on [a, b] implies that f ′ takes on any value k between f ′(a) and f ′(b)) follows
from Lemma 6.2.11 (straightforward from definition of derivative) and the
interior extremum theorem applied to g(x) = kx − f(x).

§6.4 Know the definition of the nth Taylor Polynomial Pn(x) approximat-
ing a function f at a point x0. Taylor’s Theorem 6.4.1 (f(x) − Pn(x) =
f (n+1)(c)
(n+1)!

(x − x0)
n+1 for some c between x0 and x): understand that it is

proved by applying Rolle’s Theorem to an appropriately cooked up auxiliary
function. Newton’s Method 6.4.7: understand how it works and why it gives
“quadratic” convergence.
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