CORRECTION OF HW5

Exercise 1. Page 80, #1.

Proof.

Take for example the following sequence: $x_{2k} = k, x_{2k+1} = 1$.

Exercise 2. Page 80, #3.

Proof. Recall that f_n satisfies the relation $f_{n+2} = f_{n+1} + f_n$ and that all the f_n are > 0. therefore we deduce that $\frac{f_{n+2}}{f_{n+1}} = 1 + \frac{f_n}{f_{n+1}}$. We know that $x_n = \frac{f_{n+1}}{f_n}$ has a limit L. Notice that L cannot be zero (because then $\frac{f_n}{f_{n+1}}$ would then be unbounded, which is not the case because it is equal to $\frac{f_{n+2}}{f_{n+1}} - 1$, which converges to L - 1). Thus we can apply the quotient theorem and obtain the equality $L = 1 + \frac{1}{L}$. This implies that $L^2 = L + 1$. By solving this equation and keeping the positive root we get $L = \frac{1+\sqrt{5}}{2}$.

Exercise 3. Page 80, #8a.

Proof. Let's compare $x_{n+1} = (3(n+1))^{1/2(n+1)}$ and $x_n = (3n)^{1/2n}$. We have $x_{n+1}^{2n.2(n+1)} = 3(n+1)^{2n} = (3n)^{2n} \cdot (1+\frac{1}{n})^{2n}$, whereas $x_n^{2n.2(n+1)} = (3n)^{2(n+1)} = (3n)^{2n} \cdot (3n)^2$, therefore after some integer K, the sequence is decreasing (because $(1 + \frac{1}{n})^{2n}$ is eventually strictly smaller than $(3n)^2$). Since it is bounded below by 0, it has a limit L.

Now the subsequence x_{2n} must converge to the same limit L, but we have

 $x_{2n} = (3.2n)^{1/4n} = 2^{1/4n} \cdot x_n^{1/2}$ so this converges to $1 \cdot \sqrt{L} = \sqrt{L}$ so $L = \sqrt{L}$ and thus L = 1.

Exercise 4. Page 80, #14.

Proof. Pick $\varepsilon_1 = 1$, then we know the existence of x_{n_1} such that $s - \varepsilon_1 < x_{n_1} \leq s$ (def. of a sup),

and we even know that $x_{n_1} < s$. Pick $\varepsilon_2 = \frac{1}{k_2}$, such that k_2 is at least 2 (thus $\varepsilon_2 < \frac{1}{2}$), and such that $x_{n_1} < s - \varepsilon_2$, then one knows the existence of x_{n_2} such that $s - \varepsilon_2 < x_{n_2} < s$.

Pick $\varepsilon_3 = \frac{1}{k_3}$, such that k_3 is at least 3 (thus $\varepsilon_3 < \frac{1}{3}$), and such that $x_{n_2} < s - \varepsilon_3$, then one knows the existence of x_{n_3} such that $s - \varepsilon_3 < x_{n_3} < s$.

By continuing like this one constructs an increasing subsequence x_{n_k} that has the property that $s - \frac{1}{k} < x_{n_k} < s$, therefore it converges to s (Squeeze theorem!). \square

Exercise 5. Page 80, #15.

Proof. Since the I_n are nested one knows that $x_n \in I_0$ so this sequence is bounded and therefore by Bolzano-Weierstrass. it has a converging subsequence (x_{n_k}) , with limit L.

Let's prove by contradiction that $L \in \bigcap_{n=1}^{\infty} I_n$. Indeed, if it's not the case, then say $L \notin I_N$ for some N. Pick $\varepsilon > 0$ small enough such that $(L - \varepsilon, L + \varepsilon) \cap I_N = \emptyset$. By convergence of (x_{n_k}) , there is some element of this subsequence, say x_{n_K} that lands in $(L - \varepsilon, L + \varepsilon)$ and such that n_K is larger than N, thus I_{n_K} intersects $(L - \varepsilon, L + \varepsilon)$, but this is a contradiction because $I_{n_K} \subset I_N$ (and I_N doesn't intersect that interval).

Exercise 6. Page 86, #1.

Proof. $(-1)^n$ is bounded and not convergent so it's not a Cauchy sequence.

Exercise 7. Page 86, #3c.

Proof. (ln *n*) is not bounded so it's certainly not a Cauchy sequence. This can be proved using the definition:pick $\varepsilon = 1$, can we find *K* such that for any $n, m \ge K$ one has $|\ln n - \ln m| = |\ln \frac{n}{m}|$ less than 1? The answer is no: take $n = 5m > m \ge K$, then $\ln \frac{6m}{m} = \ln 6 > 1$.

Exercise 8. Page 86, #9.

Proof. Notice that $|x_{n+p} - x_n| \leq |x_{n+p} - x_{n+p-1}| + \dots + |x_{n+1} - x_n| < r^{n+p-1} + \dots + r^n$. But this last sum is also $r^n \cdot (r^{p-1} + \dots + 1) = r^n \cdot \frac{1 - r^p}{1 - r} < \frac{1}{1 - r} \cdot r^n$.

Given any $\varepsilon > 0$, then one can find a natural number K such that for any $n \ge K$ one has $\frac{1}{1-r} r^n \le \frac{1}{1-r} r^K < \varepsilon$, and thus the sequence is a Cauchy sequence.

Exercise 9. Page 86, #13.

Proof. First we notice that x_n is never zero so the sequence is well-defined.

Then one has $|x_{n+2} - x_{n+1}| = |2 + \frac{1}{x_{n+1}} - 2 - \frac{1}{x_n}| = |\frac{x_n - x_{n+1}}{x_n \cdot x_{n+1}}| \leq \frac{1}{4} \cdot |x_{n+1} - x_n|$ because every x_n is > 2. So the sequence is contractive, and therefore converges to a limit x. This limit must satisfy $x = 2 + \frac{1}{x}$ and be positive, thus one must have $x^2 = 2x + 1$, and then one gets that $x = 1 + \frac{\sqrt{5}}{2}$.

