
MAT 319/320

Correction of HW5

Exercise 1. Page 80, #1.

Proof.

Take for example the following sequence: x2k = k, x2k+1 = 1.
�

Exercise 2. Page 80, #3.

Proof. Recall that fn satisfies the relation fn+2 = fn+1 + fn and that all the fn are > 0.

therefore we deduce that
fn+2

fn+1

= 1 +
fn

fn+1

.We know that xn =
fn+1

fn
has a limit L. Notice that

L cannot be zero (because then
fn

fn+1

would then be unbounded, which is not the case because it

is equal to
fn+2

fn+1

− 1, which converges to L − 1). Thus we can apply the quotient theorem and

obtain the equality L = 1 +
1

L
. This implies that L2 = L + 1.By solving this equation and keeping

the positive root we get L=
1 + 5

√

2
.

�

Exercise 3. Page 80, #8a.

Proof. Let’s compare xn+1 = (3(n +1))1/2(n+1) and xn = (3n)1/2n. We have

xn+1
2n.2(n+1) = 3(n + 1)2n = (3n)2n.(1 +

1

n
)2n, whereas xn

2n.2(n+1) = (3n)2(n+1) = (3n)2n.(3n)2 ,

therefore after some integer K, the sequence is decreasing (because (1 +
1

n
)2n is eventually

strictly smaller than (3n)2). Since it is bounded below by 0, it has a limit L.
Now the subsequence x2n must converge to the same limit L, but we have

x2n = (3.2n)1/4n =21/4n.xn
1/2 so this converges to 1. L

√
= L
√

so L = L
√

and thus L= 1.

�

Exercise 4. Page 80, #14.

Proof. Pick ε1 = 1, then we know the existence of xn1
such that s− ε1 < xn1

6 s (def. of a sup),
and we even know that xn1

< s.
Pick ε2 =

1

k2

, such that k2 is at least 2 (thus ε2 <
1

2
), and such that xn1

< s − ε2, then one

knows the exisence of xn2
such that s− ε2 < xn2

< s.
Pick ε3 =

1

k3

, such that k3 is at least 3 (thus ε3 <
1

3
), and such that xn2

< s − ε3, then one

knows the existence of xn3
such that s− ε3 < xn3

<s.
By continuing like this one constructs an increasing subsequence xnk

that has the property

that s− 1

k
< xnk

< s, therefore it converges to s (Squeeze theorem!). �

Exercise 5. Page 80, #15.

1



Proof. Since the In are nested one knows that xn∈ I0 so this sequence is bounded and therefore
by Bolzano-Weierstrass. it has a converging subsequence (xnk

), with limit L.
Let’s prove by contradiction that L∈∩n=1

∞ In. Indeed, if it’s not the case, then say L � IN for
some N . Pick ε > 0 small enough such that (L − ε, L + ε) ∩ IN = ∅. By convergence of (xnk

),
there is some element of this subsequence, say xnK

that lands in (L− ε, L + ε) and such that nK

is larger than N , thus InK
intersects (L − ε, L + ε), but this is a contradiction because InK

⊂ IN

(and IN doesn’t intersect that interval).
�

Exercise 6. Page 86, #1.

Proof. (− 1)n is bounded and not convergent so it’s not a Cauchy sequence.
�

Exercise 7. Page 86, #3c.

Proof. (ln n) is not bounded so it’s certainly not a Cauchy sequence. This can be proved using
the definition:pick ε = 1, can we find K such that for any n, m >K one has

∣

∣lnn− lnm
∣

∣ =
∣

∣ln
n

m

∣

∣

less than 1? The answer is no: take n =5m >m >K, then ln
6m

m
= ln 6> 1. �

Exercise 8. Page 86, #9.

Proof. Notice that
∣

∣xn+p − xn

∣

∣ 6
∣

∣xn+p − xn+p−1

∣

∣ +� +
∣

∣xn+1− xn

∣

∣ < rn+p−1 +� + rn.

But this last sum is also rn.(rp−1 +� + 1)= rn.
1− rp

1− r
<

1

1− r
.rn.

Given any ε > 0, then one can find a natural number K such that for any n > K one has
1

1− r
.rn 6

1

1− r
.rK < ε, and thus the sequence is a Cauchy sequence.

�

Exercise 9. Page 86, #13.

Proof. First we notice that xn is never zero so the sequence is well-defined.

Then one has
∣

∣

∣

xn+2− xn+1

∣

∣

∣

=
∣

∣

∣

2 +
1

xn+1

− 2− 1

xn

∣

∣

∣

=
∣

∣

∣

xn − xn+1

xn.xn+1

∣

∣

∣

6
1

4
.
∣

∣

∣

xn+1− xn

∣

∣

∣

because every

xn is > 2.So the sequence is contractive, and therefore converges to a limit x.This limit must
satisfy x = 2+

1

x
and be positive, thus one must have x2 = 2x + 1, and then one gets that

x =1 +
5

√

2
.

�

2


