
MAT 319/320

Correction of HW4

Exercise 1. Page 67, #6a.

Proof.

By the sum rule, the limit of (2 + 1/n) is equal to 2. By the product rule, the limit of (2 + 1/
n)2 is 2.2=4.

�

Exercise 2. Page 67, #9.

Proof. One has yn = n +1
√

− n
√

=
1

n +1
√

+ n
√ (multiply the numerator and denominator by

the conjugate quantity).
But now one has 0 6 yn 6

1

n
√ . Therefore if one proves that (1/ n

√
) converges to zero, the

squeeze theorem implies that (yn) converges itself to zero.
Fix any ε > 0, then by the archimedean property there exists a natural number K such that

K > ε2, but this implies that for any n > K one has n > ε2, implying
1

n
√ < ε, thus we proved

that (1/ n
√

) converges to zero, and hence (yn) converges to zero.

Now n
√

yn =
n

√

n + 1
√

+ n
√ =

n
√

n
√ .

1

(1+ 1/n)
p

+1
=

1

1+ 1 +
1

n

q . By the square root theorem 1 +
1

n

√

converges to 1. By the quotient theorem (which applies because the limit of the denominator is
nonzero), one knows that n

√
.yn converges to 1/2.

�

Exercise 3. Page 67, #21.

Proof. Pick any ε > 0.
Since (xn) is convergent to a limit x, we know the existence of a natural number K such that

for any n > K one has |xn − x|< ε/2. We also know the existence of another natural number M ′

such that for any n> M ′ one has |xn − yn|< ε/2.
Now for any n > L=max {K, M ′} one has by the triangle inequality:

|yn− x|6 |yn− xn|+ |xn− x|< ε/2 + ε/2 = ε

Thus we proved that (yn) converges, to the same limit x.
�

Exercise 4. Page 74, #1.

Proof. Let’s prove that for any n > 1 one has 4 6 xn 6 8.(Make a drawing to guess these
bounds!)

This is true for n =1 (because x1 = 8). Assume it is true for k: then one has
xk+1 =

1

2
xk + 2 6

1

2
8 +2 = 66 8, and also

1

2
xk +2 >

4

2
+ 2 =4 so this is true for xk+1.

Now let us prove that the function f(x)=
1

2
x+ 2 is such that f(x)< x on the

1



interval (4, 8]: indeed f(x) < x is equivalent to
1

2
x + 2 < x, which is equivalent to 2 <

1

2
x or

simply x > 4.
Therefore since any xn belongs to that interval, one has that xn+1 = f(xn) < xn, and thus

our sequence is strictly decreasing. Since it is also bounded below, we know that it must con-
verge to a limit x.

Now the limit x must satisfy x=
1

2
x+ 2, which is equivalent to x = 4, so the limit is 4. �

Exercise 5. Page 74, #4.

Proof. Let’s prove that for any n > 1 one has 0 6 xn 6 2. (Again make a drawing to guess this).
This is true for n =1 because x1 =1. Assume it is true for k:

then one has 2 6 2 + xk 6 4 and thus 0 6 2
√

6 2 +xk

√
6 4
√

=2, so it is true for k +1.

Now let us prove that on the interval [0, 2] the function f(x) = 2+ x
√

satisfies f(x) > x.But

since f(x) > 0 on this interval, so is 2+ x
√

+ x, thus one has f(x) − x =
2

2+ x
√

+ x
> 0 (multiply

numerator and denominator by the conjugate quantity, which is nonzero).
Since any xn belongs to that interval one has xn+1 = f(xn) > xn, so the sequence is

increasing. It is also bounded by 2, so it is convergent to a real number x by our theorem on

convergence of monotone bounded sequences. Now the limit x must satisfy x = 2 +x
√

, which is
equivalent to

(

x > 0 and x2 = 2 + x
)

, which is equivalent to (x = 2) (notice that x2− x − 2 = (x −
2).(x+ 1) and we want the positive root).

Thus the sequence converges to 2.
�
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