MAT 319/320

CORRECTION OF HW3

Exercise 1. Page 50, #2.

Proof.

1. If S is bounded then there exists a lower bound m and an upper bound M. By defini-
tion, they are such that any = in S satisfies m < ¢ < M. But this means z € [m,
M. Therefore S C [m, M].

2. Conversely, S C [m, M] exactly means that any = in S is bounded above by M, and
below by m.

O

Exercise 2. Page 50, #9.

Proof. By contradiction: assume that the intersection is non empty, and therefore contains
some real number z. Pick any integer K strictly larger than z (for example 1 + E(z), where
E(x) is the integral part of x): then clearly = ¢ (K, 00) and thus « ¢ ()77, (n,c0), a contradic-
tion.

O

Exercise 3. Page 50, #13.

Proof. Since 1/3 is strictly less than 1, the binary representation starts with 0.

We want to find a, b, ¢, d € {0, 1} such that the binary representation of 1/3 starts with
(0.abcd...)s2.

We notice that % > %, %,
is 1. Then % + % is too large so the following digit must be 0. Similarly the fourth digit is 1

0,1 0,1

because 5 + o5 + 55 + 57 <1/3.

It seems that there is a pattern: so let’s prove that the binary expansion of 1/3 is
0.010101...

Call z := (0.0101010101...)2 Then notice that 2.2 = (1.01010101...)s, so by subtraction one

has that (22— 1).z =1 which means exactly that z=1/3.

so the first digit @ must be 0 (not one). Then % < %, so the next digit

O
Exercise 4. Page 50, #17.
Proof. Write x=1.25137137... then 100z =125+ 0.137137... .
But if you write y =0.137137..., you see that 999y = 137, therefore = = 125130999 = 19295900102.
Similarly, if y=35.14653653... you see that 100y = 3514 + % therefore y = %.
O



Exercise 5. Page 59, #3c.

Proof. We have already z1 = 1,22:2,z3:%:3,z4:—:5,z5:—:§. O

Exercise 6. Page 59, #4.

Proof. Let € >0, by the archimedean property we know the existence of an integer K satisfying

K> %. Therefore, for any n > K one has n > @ and thus ‘% < e. Therefore, the sequence is
converging to zero. O

Exercise 7. Page 59, #5c.
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Proof. One has 0< DT 2‘ 10 S ST
Since we know that 1/n converges to zero, we deduce that z,, converges to 3/2. g

Exercise 8. Page 59, #6c.

Proof. One has 0 < | Y| < L for n > 1, so it is enough to prove that 1/(y/n) converges to

n+1 vn
zero.
Given any € > 0, by the archimedean property one can find an integer K > 2, therefore for
any n> K, one has n>¢? and so 0<1/(y/n) <e¢, so (1/4/n) converges to zero. O

Exercise 9. Page 59, #8.

Proof. The convergence of (z,) to zero translates as follows:
for any € >0 there exists an integer K such that: for all n > K one has |z,| <e.

The convergence of (|x,|) to zero translates as follows:
for any € > 0 there exists an integer K such that: for all n > K one has ||z, || <e.

Since |z,,| >0, one has that |z, | =]|zx|| so the two propositions are equivalent.

Now if x,,=(—1)", one can see that |z,|=1 so it converges, but (z,) doesn’t converge.
|

Exercise 10. Page 67, #5b.

Proof. A convergent sequence must be bounded. Since (( — 1)™.n?) is unbounded, it cannot
converge.
(Remark: to be convinced that it is unbounded, use the Archimedean property. Given any
M >0, there exists an integer K >+ M and therefore any n > K satisfies ’(— 1)".n2‘ > M)
|

Exercise 11. Page 67, #6d.

Proof. One has z, = Z—; = % + ml/ﬁ Now we have already proved above that (1/1/n) con-
verges to zero (Archimedean property!), and since 0 < ’#‘ < % — 0, we see that z,, is the sum

of two sequences converging to zero, therefore it converges to zero.
g



Exercise 12. Page 67, #7.

Proof. Let M >0 be an upper bound for the sequence (b,,).

Given any € > 0, since (a,) converges to zero, we know the existence of an integer K such
that for all n > K one has }an} < %

Now for any n > K, one has |an.b,| < |an|.M < e. But this exactly says that (anby,) converges
to zero.

The theorem 3.2.3 cannot be applied because (b,) is only bounded, and not necessarily con-
vergent.

a
Exercise 13. Page 67, #17.

Proof. Let r be a real number satisfying 1 < r < L. Since (xn+1/xn) converges to L, we know

L2l [ < L - 7. But this

the existence of an integer K such that for any n > K one has
implies that for any n > K one has % >r.

Let’s prove by induction that for any n > K one has z, > r" ¥ 2k

This is true for n=K because zx =r"2x.

Assume it is true for n, then we have that =, 11 >r.z, > ran K g =pntl-K
done.

Now it remains to prove that the sequence (r") for r > 1 is unbounded.

Here is one possible way: write » = 1 + d, and prove by induction that for any n one has
1+d)">1+n.d.

Another way is to take the log(r™) and apply the archimedean property.
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