CORRECTION OF HW2

Exercise 1. Page 38, #2.

Proof. The set S_2 is not empty and is bounded below (for example by 0), so it has an infimum. Let's prove that $0 = \inf(S_2)$:

- 1. For any x in S_2 , one has $0 \leq x$;
- 2. For any $\varepsilon > 0$, one can find x in S_2 such that $0 \le x < 0 + \varepsilon$ (take $\varepsilon/2$ for example).

Therefore $0 = \inf(S_2)$.

Now S_2 is not bounded above, so it doesn't have upper bounds (and therefore doesn't have a sup).

Exercise 2. Page 38, #3.

Proof. Supremum: Since $n \in \mathbb{N} \Rightarrow \frac{1}{n} \leq 1$, one knows that S_3 is bounded above, since it is also a non empty subset of \mathbb{R} , we know that it has a supremum. Let's prove that $1 = \sup(S_3)$:

- 1. For any x in S_3 , one has $x \leq 1$;
- 2. For any $\varepsilon > 0$, one can find an x in S₃ such that $1 \varepsilon < x \leq 1$ (just take x = 1!)

Infimum:

Let's prove that $0 = \inf(S_3)$:

- 1. For any x = 1/n in S_3 , one has $x \ge 0$;
- 2. For any $\varepsilon > 0$, one can find an x in S_3 such that $0 \le x < \varepsilon$ (indeed by the archimedean property one knows the existence of an integer $n_{\varepsilon} > 1/\varepsilon$, then just take $x = 1/n_{\varepsilon}$).

Exercise 3. Page 38, #7.

- **Proof.** a) Assume that u is an upper bound of S non empty: this means that for any x in S one has $x \leq u$. Now if t is any real number such that t > u, we will get that t > x for any $x \in S$, so $t \notin S$.
 - b) Conversely: Assume now that $(t > u) \Rightarrow t \notin S$. Suppose that u is not an upper bound. Since S is not empty, this would imply the existence of $y \in S$ such that y > u (contradiction).

Exercise 4. Page 38, #9.

- **Proof.** a) If α is an upper bound for A, and β is an upper bound for B, then the maximum of the two numbers α , β is an upper bound for $A \cup B$. For the lower bounds, take the minimum instead. So the union of two bounded sets is a bounded set.
 - b) At this point we know the existence of sup $(A \cup B)$.Let's prove that sup $(A \cup B) = \sup \{\sup A, \sup B\}$:
 - 1. We already know that $Z = \sup \{\sup A, \sup B\}$ is an upper bound of $A \cup B$;
 - 2. For any $\varepsilon > 0$, is there an element $x \in A \cup B$ such that $Z \varepsilon < x$?

There are two cases: if $Z = \sup A$, then we now the existence of an element y in A such that $\sup A - \varepsilon < y$ so we are done (because $y \in A \subset A \cup B$). If $Z = \sup B$, the same argument works (replace A by B).

Exercise 5. Page 43, #1.

Proof. Let's show that $\sup S = 1$, where $S = \left\{1 - \frac{1}{n}, n \in \mathbb{N}\right\}$:

- 1. For any $x = 1 \frac{1}{n}$, one has $x \leq 1$;
- 2. For any $\varepsilon > 0$, one can find an x in S such that $1 \varepsilon < x \leq 1$: indeed by the archimedean property one knows the existence of an integer $n_{\varepsilon} > 1/\varepsilon$. Therefore $1/n_{\varepsilon} < \varepsilon$ and $1 - \varepsilon < \varepsilon$ $1 - 1/n_{\epsilon}$.

Exercise 6. Page 43, #14.

Proof. As in the textbook, let $S := \{s \in \mathbb{R}; 0 \leq s \text{ and } s^2 < 3\}$.

S is not empty (it contains 1 for example) and is bounded above (for example by 2, because $s \ge 2$ implies that $s^2 \ge 4$ and thus such an s is not in S). Therefore, by completeness of \mathbb{R} we know the existence of $x = \sup(S)$. Let's prove now that $x^2 = 3$.

1. $x^2 > 3$ is impossible:

It is enough to find an integer $n \ge 1$ such that $(x - \frac{1}{n})^2 > 3$. Because then any $s \in S$ would be such that $s^2 < (x - \frac{1}{n})^2$, implying $s < (x - \frac{1}{n})$ (because $s \ge 0$ and $(x - \frac{1}{n}) > 0$); but that last inequality would mean that $(x - \frac{1}{n})$ is an upper bound of S (absurd).

Let's find such an integer n:

we notice that $(x - \frac{1}{n})^2 = x^2 - \frac{2 \cdot x}{n} + \frac{1}{n^2} \ge x^2 - \frac{2 \cdot x}{n}$. So we would be done if we could find *n* such that $x^2 - \frac{2 \cdot x}{n} > 3$, but this is equivalent to finding an *n* such that $\frac{x^2 - 3}{2 \cdot x} > \frac{1}{n}$ where *x* is given to you. But we know that this is possible, by the archimedean property of \mathbb{R} .

Remark: other possible proof:

Remark that $x^2 > 3$ implies x > 3/x, therefore one has that $y = \frac{1}{2}(x + \frac{3}{x}) < x$. But now $y^2 > 3$. Indeed $y^2 - 3 = \frac{1}{4}(x^2 + 6 + \frac{9}{x^2} - 12) = \left[\frac{1}{2}(x - \frac{3}{x})\right]^2 > 0$.

2. $x^2 < 3$ is impossible:

If one can finds an integer n such that $(x+\frac{1}{n})^2 \leq 3$, we are done (because we found an

element of S strictly larger than sup S, which is absurd). Notice that $(x + \frac{1}{n})^2 = x^2 + \frac{2 \cdot x}{n} + \frac{1}{n^2} \leq x^2 + \frac{2 \cdot x}{n} + \frac{1}{n}$. So we will be done if we can find an integer n such that $x^2 + \frac{2 \cdot x}{n} + \frac{1}{n} \leq 3$, which is equivalent to $\frac{1}{n}(2 \cdot x + 1) \leq 3 - x^2$, or if one prefers $n \geq \frac{2x+1}{3-x^2}$ (notice that $3 - x^2 \neq 0$, so I can divide by it!). But such an integer can always be found, given x, thanks to the archimedean property of \mathbb{R} .

Exercise 7. Page 43, #18.

Proof. Since u > 0, we know that x < y implies x/u < y/u. Then we know the existence of a rational number $r \in \mathbb{Q}$ such that x/u < r < y/u. But this implies that x < r.u < y.