
MAT 319/320

Correction of HW2

Exercise 1. Page 38, #2.

Proof. The set S2 is not empty and is bounded below (for example by 0), so it has an infimum.
Let’s prove that 0= inf (S2):

1. For any x in S2, one has 0 6 x;

2. For any ε > 0, one can find x in S2 such that 0 6x < 0 + ε (take ε/2 for example).

Therefore 0= inf (S2).
Now S2 is not bounded above, so it doesn’t have upper bounds (and therefore doesn’t have a

sup).
�

Exercise 2. Page 38, #3.

Proof. Supremum: Since n ∈N⇒
1

n

6 1, one knows that S3 is bounded above, since it is also

a non empty subset of R, we know that it has a supremum. Let’s prove that 1 = sup (S3):

1. For any x in S3, one has x 6 1;

2. For any ε > 0, one can find an x in S3 such that 1− ε <x 6 1 (just take x= 1!)

Infimum:

Let’s prove that 0= inf (S3):

1. For any x =1/n in S3, one has x > 0;

2. For any ε > 0, one can find an x in S3 such that 0 6 x < ε (indeed by the archimedean
property one knows the existence of an integer nε > 1/ε, then just take x = 1/nε).

�

Exercise 3. Page 38, #7.

Proof. a) Assume that u is an upper bound of S non empty:
this means that for any x in S one has x 6 u. Now if t is any real number such that

t > u, we will get that t > x for any x∈S, so t � S.

b) Conversely: Assume now that (t > u) ⇒ t � S. Suppose that u is not an upper bound.
Since S is not empty, this would imply the existence of y ∈ S such that y > u (contradic-
tion).

�

Exercise 4. Page 38, #9.

Proof. a) If α is an upper bound for A, and β is an upper bound for B, then the maximum
of the two numbers α, β is an upper bound for A ∪ B. For the lower bounds, take the
minimum instead.So the union of two bounded sets is a bounded set.

b) At this point we know the existence of sup (A ∪ B).Let’s prove that sup (A ∪ B) = sup
{supA, supB}:

1. We already know that Z = sup {supA, supB} is an upper bound of A∪B;

2. For any ε > 0, is there an element x∈A∪B such that Z − ε < x?

1



There are two cases: if Z = supA, then we now the existence of an element y in
A such that sup A − ε < y so we are done (because y ∈ A ⊂ A ∪ B). If Z = sup B,
the same argument works (replace A by B).

�

Exercise 5. Page 43, #1.

Proof. Let’s show that supS =1, where S =
{

1−
1

n

, n∈N
}

:

1. For any x =1−
1

n

, one has x6 1;

2. For any ε > 0, one can find an x in S such that 1 − ε < x 6 1: indeed by the archimedean
property one knows the existence of an integer nε > 1/ε. Therefore 1/nε < ε and 1 − ε <

1− 1/nε.

�

Exercise 6. Page 43, #14.

Proof. As in the textbook, let S4 {

s∈R; 0 6 s and s2 < 3
}

.

S is not empty (it contains 1 for example) and is bounded above (for example by 2, because

s > 2 implies that s2 > 4 and thus such an s is not in S). Therefore, by completeness of R we

know the existence of x = sup (S). Let’s prove now that x2 =3.

1. x
2
> 3 is impossible:

It is enough to find an integer n > 1 such that (x −
1

n

)2 > 3. Because then any s ∈ S

would be such that s2 < (x −
1

n

)2, implying s < (x −
1

n

) (because s > 0 and (x −
1

n

) > 0);

but that last inequality would mean that (x−
1

n

) is an upper bound of S (absurd).
Let’s find such an integer n:

we notice that (x −
1

n

)2 = x2 −
2.x

n

+
1

n
2

> x2 −
2.x

n

. So we would be done if we could

find n such that x2 −
2.x

n

> 3, but this is equivalent to finding an n such that
x
2
− 3

2.x

>
1

n

where x is given to you. But we know that this is possible, by the archimedean property
of R.

Remark: other possible proof:
Remark that x2 > 3 implies x > 3/x, therefore one has that y =

1

2
(x +

3

x

) < x. But now

y2 > 3. Indeed y2− 3 =
1

4
(x2 + 6 +

9

x
2
− 12)=

[

1

2
(x−

3

x

)
]2

> 0.

2. x
2
< 3 is impossible:

If one can finds an integer n such that (x +
1

n

)2 6 3, we are done (because we found an

element of S strictly larger than supS,which is absurd).

Notice that (x +
1

n

)2 = x2 +
2.x

n

+
1

n
2
6 x2 +

2.x

n

+
1

n

. So we will be done if we can find

an integer n such that x2 +
2.x

n

+
1

n

6 3, which is equivalent to
1

n

(2.x + 1) 6 3 − x2, or if

one prefers n >
2x +1

3−x
2
(notice that 3 − x2 � 0, so I can divide by it!). But such an integer

can always be found, given x, thanks to the archimedean property of R.

�

Exercise 7. Page 43, #18.

Proof. Since u > 0, we know that x < y implies x/u < y/u. Then we know the existence of a
rational number r∈Q such that x/u < r < y/u. But this implies that x < r.u < y.

�

2


