
MAT 319 Spring 2015
Notes on series and Ratio Test

Proposition 1: A convergent sequence is a Cauchy sequence.
Proof: This is Ross, Lemma 10.9

Definition: The series
∑∞

1 ak converges means that the sequence (sn =
∑n

1 ak) of partial
sums is a convergent sequence. (Ross, section 14.2).

Proposition 2: (Cauchy criterion) the series
∑∞

1 ak converges if and only if for every ε > 0
there exists an N such that m,n > N,m > n implies

∑m
n+1 ak < ε.

Proof: This is Ross, Theorem 14.4.

Proposition 3: If the series
∑∞

1 ak converges then lim ak = 0.

Proof: Need to show for any ε > 0 there exists an index N such that if n > N then
|an| < ε. If the series converges, it satisfies the Cauchy criterion: there exists an N ′ such
that if m,n > N ′ (and m ≥ n) then |∑m

n+1 ak| < ε. Take N = N ′ + 1. If n > N then
n − 1 > N ′ and |∑m

n−1+1 ak| < ε, i.e. |∑m
n ak| < ε. In particular, take m = n. Then

|an| = |∑m
n ak| < ε, as required. [This is better than the argument I gave in class, which

required proving first that lim ak exists.]

Proposition 4 (Comparison Test): Suppose
∑
ak is a convergent series with positive terms

(every ak ≥ 0). Then if the terms of a series
∑
bk satisfy |bk| ≤ ak for every k, the series∑

bk converges.

Proof. We use the Cauchy criterion. For every ε > 0 there exists an index N such that
m,n > N implies

∑m
n+1 ak < ε. Suppose then m,n > N ; then |∑m

n+1 bk| ≤
∑m

n+1 |bk| ≤∑m
n+1 ak < ε (∗), so

∑
bk satisfies the Cauchy criterion and therefore converges. Triangle

inequality used in (∗).

Definition: A series
∑
ak converges absolutely means that

∑ |ak| converges.

Proposition 5: If a series converges absolutely, it converges.

Proof: Since ak ≤ |ak| this follows from the Comparison Test.

Proposition 6 (Ratio Test): Suppose a series
∑
ak of non-zero terms satisfies lim |an+1

an
| =

R. Then if R < 1 the series
∑
ak converges absolutely, and if R > 1 it diverges.

Proof. First suppose R < 1. Let ε = 1
2
(1 − R). Note that 1

2
(1 − R) > 0 so there exists

an index N such that if n > N then

||an+1

an
| −R| < 1

2
(1−R),

which means

R− 1

2
(1−R) < |an+1

an
| < R +

1

2
(1−R).



Set ρ = R + 1
2
(1−R) = 1

2
(1 +R) and note that ρ < 1. In particular,

|aN+2

aN+1

| < ρ so |aN+2| < ρ|aN+1|

|aN+3

aN+2

| < ρ so |aN+3| < ρ|aN+2| < ρ2|aN+1|

. . .

| aN+i

aN+i−1
| < ρ so |aN+i| < ρ|aN+i−1| < . . . < ρi−1|aN+1|

. . . .

With the N we have obtained, let us write

∞∑
k=1

|ak| =
N∑
k=1

|ak|+
∞∑

k=N+1

|ak|.

The first sum is finite. We can apply the Comparison Test to the second sum, which equals
|aN+1| + |aN+2| + · · ·. The series

∑∞
k=N+1 |ak| is equal to

∑∞
i=1 |aN+i| (just rewriting the

indices). Since |aN+i| ≤ ρi−1|aN+1| (note that this holds for i = 1 also), and
∑∞

i=1 ρ
i−1|aN+1|

is a geometric series converging to

|aN+1|
∞∑
i=1

ρi−1 = |aN+1|
∞∑
i=0

ρi =
|aN+1|
1− ρ

the Comparison Test tells us that
∑∞

k=N+1 |ak| converges. Throwing in the finite sum∑N
k=1 |ak| exhibits

∑∞
k=1 |ak| as a convergent sequence, as was to be shown.

Now suppose R > 1, and take ε = 1
2
(R − 1). Arguing as before, we can find an N such

that if n > N then

R− 1

2
(R− 1) < |an+1

an
| < R +

1

2
(R− 1).

Set ρ = R− 1
2
(R− 1) = 1

2
(R + 1) and note that ρ > 1. In particular,

|aN+2

aN+1

| > ρ so |aN+2| > ρ|aN+1|

· · ·

| aN+i

aN+i−1
| > ρ so |aN+i| > ρ|aN+i−1| > . . . > ρi−1|aN+1|

· · · .

If
∑
ak converges, then (Proposition 3) lim ak = 0. But here limi→∞ |aN+i| > limi→∞ ρ

i−1|aN+1| =
∞ since ρ > 1. Since the terms indexed beyond N + 1 are going to ∞ in absolute value,
they have no chance of going to zero, so the sum does not converge.


