MAT 319 Spring 2015
Notes on series and Ratio Test

Proposition 1: A convergent sequence is a Cauchy sequence.
Proof: This is Ross, Lemma 10.9

Definition: The series >.7° aj converges means that the sequence (s, = Y1 ax) of partial
sums is a convergent sequence. (Ross, section 14.2).

Proposition 2: (Cauchy criterion) the series >°7° aj converges if and only if for every € > 0
there exists an NV such that m,n > N, m > n implies > ai, < e.

Proof: This is Ross, Theorem 14.4.
Proposition 3: If the series Y {° a), converges then lim a; = 0.

Proof: Need to show for any € > 0 there exists an index N such that if n > N then
la,| < e. If the series converges, it satisfies the Cauchy criterion: there exists an N’ such
that if m,n > N’ (and m > n) then |3 ax] < €. Take N = N'+ 1. If n > N then
n—1> N and | X0 ax| <€ ie |[X7ag| < e In particular, take m = n. Then
la,| = | X" ag| < €, as required. [This is better than the argument I gave in class, which
required proving first that lim ay, exists.]

Proposition 4 (Comparison Test): Suppose Y. ay, is a convergent series with positive terms
(every ai > 0). Then if the terms of a series Y- by satisfy |by| < ay for every k, the series
> by, converges.

Proof. We use the Cauchy criterion. For every € > 0 there exists an index N such that
m,n > N implies 7", a < €. Suppose then m,n > N; then | X7 by| < X0 b <
Yomiar < € (%), s0 Y by satisfies the Cauchy criterion and therefore converges. Triangle
inequality used in (x).

Definition: A series Y- ap converges absolutely means that Y |ax| converges.
Proposition 5: If a series converges absolutely, it converges.

Proof: Since ay < |ay| this follows from the Comparison Test.

Proposition 6 (Ratio Test): Suppose a series Y a of non-zero terms satisfies lim |

R. Then if R < 1 the series Y a; converges absolutely, and if R > 1 it diverges.
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Set p= R+ (1 — R) = 1(1+ R) and note that p < 1. In particular,

a
=2 < p so an-2| < plan+]
aN+1
aN43 2
| | <p so |anys| < planye| < p”lania]
AN 42

AN+ :
| Ak | <p so |ansi| < plantica| < ... < p " Hans|
AN +i-1

With the N we have obtained, let us write
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The first sum is finite. We can apply the Comparison Test to the second sum, which equals
lans1| + |ango| + -+ The series Y32 .4 ak| is equal to Y2°; |an| (just rewriting the
indices). Since |ayii| < p"lanyi1| (note that this holds for i = 1 also), and 332, p" !an,1]|

is a geometric series converging to
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the Comparison Test tells us that >3y, |ax| converges. Throwing in the finite sum
SN | |ax| exhibits 3% |ax| as a convergent sequence, as was to be shown.

Now suppose R > 1, and take € = £(R — 1). Arguing as before, we can find an N such
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Set p=R—-LR-1)= %(R + 1) and note that p > 1. In particular,
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If 3" ay converges, then (Proposition 3) lim a;, = 0. But here lim; o |an ;| > lim;_o0 p" Hayi1| =
oo since p > 1. Since the terms indexed beyond N + 1 are going to oo in absolute value,
they have no chance of going to zero, so the sum does not converge.



