
MAT 319 Spring 2015
Notes on power series

A power series is a series
∑∞

0 akx
k. The main questions are:

• for which values of x is the series convergent?

• for those values, what are the properties of the function f(x) =
∑∞

0 akx
k defined by

the series?

Proposition 1: Suppose that the sequence |an+1

an
| has a limit β as n→∞; β may be 0,∞

or any number in between. Let R = 1/β. Then
∑∞

0 akx
k converges for |x| < R and diverges

for |x| > R. R is the radius of convergence of the power series.

Proof: Apply the Ratio Test to
∑∞

0 akx
k. The ratio of consecutive terms is |an+1x

n+1/anx
n| =

|x||an+1

an
|. The limit of these ratios is |x|β = |x|/R which will be < 1 if |x| < R and > 1 if

|x| > R.

Note that since the Ratio Test gives no information when the limit of the ratios is 1,
Proposition 1 only yields the radius of convergence R, but not what happens at x = R or
x = −R. These have to be analyzed separately as series. As we saw in class,

•
∞∑
x=0

xn has interval of convergence (−1, 1)

•
∞∑
x=1

xn

n
has interval of convergence [−1, 1)

•
∞∑
x=1

xn

n2
has interval of convergence [−1, 1].

If a number belongs to the interval of convergence of the series
∑∞

k=0 akx
k, that means

that the series converges to a certain value when that number is substituted for x; this
defines a function f which we write as f(x) =

∑∞
k=0 akx

k. By the usual definition of a series,
f(x) =

∑∞
k=0 akx

k = limn→∞
∑n

k=0 akx
k. Now gn(x) =

∑n
k=0 akx

k = a0 + a1x + · · · + anx
n

defines an ordinary polynomial of degree n. In particular gn is continuous (and has derivatives
of any order). But examples like gn(x) = xn for 0 ≤ x ≤ 1, where limn→∞ gn(x) = 0 if
x < 0 and = 1 if x = 1 show that the limit of a sequence of continuous functions may be
discontinuous. A stronger kind of limit is needed.

Definition: We are given a sequence (gn) of functions defined on a common domain S.
The sequence (gn) converges uniformly to the function f defined on S if for every ε > 0 there
exists an index N with the property that n > N implies |gn(x)− f(x)| < ε for every x ∈ S.
(Ross, Def. 24.2).

Equivalently, we say “f is the uniform limit of the sequence (gn).”
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It is important to understand the difference between this limit and the one implied in the
statement f(x) =

∑∞
k=0 akx

k. There for any x ∈ S we know that f(x) = limn→∞ gn(x), with
gn as above. (We say that “f is the pointwise limit of the sequence (gn)”). This means that
for any x ∈ S, for every ε > 0 there exists an index N with the property that n > N implies
|gn(x)− f(x)| < ε. But here N may depend on x!. Everything depends on the placement of
the clause “for any x ∈ S.”

Proposition 2: A uniform limit of continuous functions is continuous. (Ross, Theorem
24.3).

Our immediate goal is to prove that the function defined by a convergent power series∑∞
k=0 akx

k is continuous within its radius of convergence, so it would be useful to know where
the sequence (gn) of functions, defined by gn(x) =

∑n
k=0 akx

k, is uniformly convergent. To
settle this we need an additional concept, the adaptation of “Cauchy sequence” to uniform
convergence of a sequence of functions.

Definition: A sequence (gn) of functions defined on a common domain S is uniformly
Cauchy if for every ε > 0 there exists an index N with the property that if n,m > N then
|gn(x)− gm(x)| < ε for any x ∈ S.

Note again the placement of the clause “for any x ∈ S.”

Proposition 3. If a sequence (gn) of functions defined on a common domain S is uniformly
Cauchy, then it converges uniformly to a function f defined on S. (Ross, Theorem 25.4).

A tool for applying Proposition 3 to power series is the “Weierstrass M-test.”

Proposition 4. (Ross 25.7) We start with a convergent series
∑∞

k=0Mk = L of positive
numbers. Now suppse we have an infinite series

∑∞
k=0 fk(x) of functions all defined on some

domain S, and that for eack k, |fk(x)| ≤Mk for all x ∈ S. Then the sequence gn of functions,
defined by gn(x) =

∑n
k=0 fk(x), converges uniformly on S to a limit f(x). Or we can say

that the series
∑∞

k=0 fk(x) converges uniformly on S to f .

The proof uses the logic
∑∞

k=0Mk convergent means (Mn) = (
∑n

k=0Mk) is a convergent
sequence ⇒ (Mn) is a Cauchy sequence ⇒ the sequence (gn(x)) is uniformly Cauchy for
x ∈ S, and then Proposition 3.

Now we are in a position to prove that a power series defines a continuous function inside
its radius of convergence.

Lemma 1. Suppose that for a power series
∑∞

k=0 akx
k the limit limk→∞ |

ak+1

ak
| = β exists

(β can be 0,∞ or anything in between), so that
∑∞

k=0 akx
k has radius of convergenceR = 1/β.

The associated power series
∑∞

k=0 |ak|xk (each coefficient is replaced by its absolute value)
also has radius of convergence R.

Proof: Follows from | |ak+1|
|ak|

| = |ak+1

ak
|.
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Proposition 5. (Ross, 26.1) A power series
∑∞

k=0 akx
k with radius of convergence 0 < R ≤

∞ converges uniformly on any interval [−R1, R1] with R1 < R.

Proof: Let Mk = |ak|Rk
1 . Since R1 < R, it is inside the radius of convergence of∑n

k=0 |ak|xk (see Lemma 1), so
∑∞

k=0Mk is a convergent series of positive numbers. Fur-
thermore the functions fk = akx

k satisfy |fk(x)| ≤ Mk for |x| ≤ R1. By the Weierstrass
M-test,

∑∞
k=0 akx

k converges uniformly to a function f(x) on [−R1, R1].

Note that since each fk is continuous and the convergence is uniform, the limit function
f is continuous on [−R1, R1].

Proposition 6. (Ross 26.2) If the power series
∑∞

k=0 akx
k has radius of convergence R,

then the sum f(x) =
∑∞

k=0 akx
k is continuous on (−R,R).

Proof: It is enough to show that f is continuous at any x ∈ (−R,R). Since |x| < R,
there exists R1 with |x| < R1 < R. Since the series converges uniformly on [−R1, R1] by
Proposition 5, the limit is continuous on [−R1, R1], hence at x.

Note that even though the limit function is continuous on (−R,R), the convergence is not,
in general, uniform on (−R,R). As R1 → R, the uniform convergence given by Proposition
5 may become harder and harder to achieve, in the sense that larger and larger Ns are
required for any given ε.

Integration and differentiation of power series.

Lemma 2. Suppose that for a power series
∑∞

k=0 akx
k the limit limk→∞ |

ak+1

ak
| = β

exists (β can be 0, ∞ or anything in between), so that
∑∞

k=0 akx
k has radius of convergence

R = 1/β. Then the associated power series
∑∞

k=0 kakx
k−1 and

∑∞
k=0

1
k+1

akx
k+1 also have

radius of convergence R.

Proof: To follow the regular construction explicitly, let bi = (i + 1)ai+1 and cj = 1
j
aj−1,

so that ∞∑
k=0

kakx
k−1 =

∞∑
i=0

bix
i and

∞∑
k=0

1

k + 1
akx

k+1 =
∞∑
j=1

cjx
j.

Then
bi+1

bi
=

(i+ 2)ai+2

(i+ 1)ai+1

=
i+ 2

i+ 1

ai+2

ai+1

. Since limi→∞
i+ 2

i+ 1
= 1 and limi→∞

ai+2

ai+1

= β the

first associated power series also has radius of convergence R = 1/β. On the other hand

cj+1

cj
=

1
j+1

aj
1
j
aj−1

=
j

j + 1

aj
aj−1

. Since limj→∞
j

j + 1
= 1 and limj→∞

aj
aj−1

= β the second

associated power series also has radius of convergence R.

Proposition 7. (Ross, 25.2) Let (fn) be a sequence of continuous functions defined on [a, b]
which converges uniformly on [a, b] to the function f . Then limn→∞

∫ b
a fn(x) dx =

∫ b
a f(x) dx.

Note that proof requires uniform convergence.

Proposition 8. (Ross, 26.4) If the power series f(x) =
∑∞

k=0 akx
k has radius of convergence
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R > 0, then for any x with |x| < R,

∫ x

0
f(t) dt =

∞∑
k=0

ak
k + 1

xk.

Proof: On the interval [−x, x] the series converges uniformly (Proposition 5); this means
that the sequence of partial sums gn(x) =

∑n
k=0 akx

k converges uniformly to f ; so by Propo-
sition 7, ∫ x

0
f(t) dt = lim

n→∞

∫ x

0
gn(t) dt = lim

n→∞

n∑
k=0

ak
k + 1

xk+1 =
∞∑
k=0

ak
k + 1

xk+1.

This proposition means that a uniformly convergent power series can be integrated term
by term.

Proposition 9. (Ross, 26.5) If the power series f(x) =
∑∞

k=0 akx
k has radius of convergence

R > 0, then f is differentiable on (−R,R) and for |x| < R, f ′(x) =
∑∞

k=1 kakx
k−1.

Proof: By Lemma 2, the series g(t) =
∑∞

k=1 kakt
k−1 also has radius of convergence R, so

we can apply Proposition 8 and integrate it term by term from 0 to x:∫ x

0
g(t) dt =

∞∑
k=1

1

k − 1 + 1
kakx

k−1+1 =
∞∑
k=1

akx
k = f(x)− a0.

Now differentiate both sides. By the Fundamental Theorem of Calculus, (d/dx)
∫ x
0 g(t) dt =

g(x), whereas (d/dx)(f(x)− a0) = f ′(x).

Some important examples.
We are now in a position to prove (with a little bit of calculus) that the three series

f(x) =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

3!
+ · · ·

g(x) =
∞∑
k=1

(−1)k+1 x2k−1

(2k − 1)!
= x− x3

3!
+
x5

5!
− · · ·

h(x) =
∞∑
k=1

(−1)k
x2k

(2k)!
= 1− x2

2
+
x4

4!
− · · ·

are equal to ex, sin x and cos x, respectively.

Note that all three series have radius of convergence R = ∞, so the functions f, g, h
are continuous on (−∞,∞). Furthermore by Proposition 9, each of them is differentiable
with derivative given by another power series with R =∞, so the derivatives themselves are
differentiable, and so on: each of f, g, h is infinitely differentiable on the whole line.
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1. Differentiating f term by term gives back the same series. Since we know by Proposi-
tion 9 that this series represents f ′, the function f satisfies the differenial equation f ′ = f ,
with initial condition (as can be checked from the series) f(0) = 1. Now some calculus: we
know from the Chain Rule that f ′/f = (ln(f))′, and so

∫ x

0

f ′(t)

f(t)
dt = ln(f(x))− ln(f(0)) = ln(f(x)),

using the initial condition. On the other hand since f ′/f = 1,

∫ x

0

f ′(t)

f(t)
dt =

∫ x

0
1 dt = x.

So ln(f(x)) = x. Exponentiating both sides gives f(x) = ex.

2. Differentiating g term by term gives exactly the series h, and differentiating h term
by term gives the series g with a minus sign. By Proposition 9, h = g′ and −g = h′ = g′′,
so the function g satisfies the differenial equation g′′ = −g, with initial conditions (as can
be checked from the series) g(0) = 0 and g′(0) = h(0) = 1. This differential equation, with
these initial conditions, is also satisfied by the function sinx.

Proposition 10. Suppose p(x) and q(x) are defined for∞ < x <∞ and are both solutions
of the equation y′′ = −y with initial conditions y(0) = 0, y′(0) = 1. Then p(x) = q(x) for all
x.

Proof: Consider the difference u = p − q. It also satisfies u′′ = −u, but with initial
conditions u(0) = 0, u′(0) = 0. Writing u′ = v transforms the second-order equation u′′ = −u
into the equivalent set of two coupled first-order equations u′ = v and v′ = −u; the initial
conditions are now u(0) = 0, v(0) = 0. Define a new function E = u2 + v2. Note that
E(0) = 0. Calculating E ′ using the Chain Rule gives E ′ = 2uu′ + 2vv′; substituting u′ = v
and v′ = −u gives E ′ = 2uv + 2v(−u) = 0. From calculus we know that a function defined
on (−∞,∞) (or on any interval) with zero derivative must be constant. Therefore E must
be constant, and since E(0) = 0, that constant value must be 0. Going back to the definition
of E, this means u2+v2 = 0, which is only possible if u and v are everywhere 0. In particular
u = 0 so p = q everywhere.

Proposition 10 implies that the function f defined by the power series, and the function
sin, are the same function.

3. This argument could be repeated to prove that h(x) = cosx. But it’s enough to
observe that h(x) is the term by term derivative of the series g(x), and so by Proposition
9 it is the derivative of the function defined by g(x). Since we have just established that
g(x) = sin x, it follows that h(x) = g′(x) = cos x.

Corrected 5/2/15, 3:30PM.
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