MAT 319 Spring 2015
Notes on power series

A power series is a series Y g° apz”. The main questions are:
e for which values of x is the series convergent?

e for those values, what are the properties of the function f(z) = 30° azz® defined by
the series?

a
Proposition 1: Suppose that the sequence |n—+1| has a limit 5 as n — oo; 8 may be 0, co
a

or any number in between. Let R = 1/8. Then Y0° apx® converges for |z| < R and diverges

for |z] > R. R is the radius of convergence of the power series.

Proof: Apply the Ratio Test to >0° az*. The ratio of consecutive terms is |, 12" Ja,2"| =
|z|[*2£]. The limit of these ratios is [2|8 = [z|/R which will be < 1 if |z[ < R and > 1 if
|z| > R.

Note that since the Ratio Test gives no information when the limit of the ratios is 1,
Proposition 1 only yields the radius of convergence R, but not what happens at z = R or

x = —R. These have to be analyzed separately as series. As we saw in class,
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e Y 2" has interval of convergence (—1,1)
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. Zl — has interval of convergence [—1,1].
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If a number belongs to the interval of convergence of the series 35 azz”, that means
that the series converges to a certain value when that number is substituted for x; this
defines a function f which we write as f(x) = 332, apx®. By the usual definition of a series,
f(z) = 20 apa® = lim, oo 37 arz®. Now g,(z) = Y7 oarr® = ap + a1x + -+ + a,a"
defines an ordinary polynomial of degree n. In particular g, is continuous (and has derivatives
of any order). But examples like g,(x) = 2" for 0 < z < 1, where lim, , g,(z) = 0 if
r < 0 and = 1 if x = 1 show that the limit of a sequence of continuous functions may be
discontinuous. A stronger kind of limit is needed.

Definition: We are given a sequence (g,) of functions defined on a common domain S.
The sequence (g,,) converges uniformly to the function f defined on S if for every € > 0 there
exists an index N with the property that n > N implies |g,(z) — f(x)| < € for every z € S.
(Ross, Def. 24.2).

Equivalently, we say “f is the uniform limit of the sequence (g,).”



It is important to understand the difference between this limit and the one implied in the
statement f(z) = 322, azz®. There for any x € S we know that f(z) = lim,, . gn(7), with
gn as above. (We say that “f is the pointwise limit of the sequence (g,)”). This means that
for any x € S, for every € > 0 there exists an index N with the property that n > N implies
lgn(x) — f(z)| < €. But here N may depend on z!. Everything depends on the placement of
the clause “for any = € S.”

Proposition 2: A uniform limit of continuous functions is continuous. (Ross, Theorem
24.3).

Our immediate goal is to prove that the function defined by a convergent power series
S, apx® is continuous within its radius of convergence, so it would be useful to know where
the sequence (g,) of functions, defined by g,(x) = >7_, axz”, is uniformly convergent. To
settle this we need an additional concept, the adaptation of “Cauchy sequence” to uniform
convergence of a sequence of functions.

Definition: A sequence (g,) of functions defined on a common domain S is uniformly
Cauchy if for every € > 0 there exists an index N with the property that if n,m > N then
|gn(x) — gm(z)| < € for any = € S.

Note again the placement of the clause “for any x € S.”

Proposition 3. If a sequence (g,) of functions defined on a common domain S is uniformly
Cauchy, then it converges uniformly to a function f defined on S. (Ross, Theorem 25.4).

A tool for applying Proposition 3 to power series is the “Weierstrass M-test.”

Proposition 4. (Ross 25.7) We start with a convergent series Y72, M) = L of positive
numbers. Now suppse we have an infinite series >.3° fx(z) of functions all defined on some
domain S, and that for eack k, | fx(z)] < My for all z € S. Then the sequence g, of functions,
defined by g,(z) = > r_o fx(x), converges uniformly on S to a limit f(x). Or we can say
that the series Y72 fx(x) converges uniformly on S to f.

The proof uses the logic >3, My convergent means (M,,) = (3}_, My) is a convergent
sequence = (M,,) is a Cauchy sequence = the sequence (g,(z)) is uniformly Cauchy for
x € S, and then Proposition 3.

Now we are in a position to prove that a power series defines a continuous function inside
its radius of convergence.

a
Lemma 1. Suppose that for a power series >3 apz” the limit limy_, o, ]ﬂ] = [ exists
ag
(8 can be 0, 0o or anything in between), so that 372, ax* has radius of convergence R = 1/4.
The associated power series 352 |ax|z* (each coefficient is replaced by its absolute value)
also has radius of convergence R.
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Proof: Follows from | | o]
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Proposition 5. (Ross, 26.1) A power series Y72, axx"® with radius of convergence 0 < R <
oo converges uniformly on any interval [—Ry, R;] with Ry < R.

Proof: Let M, = |ai|R}. Since Ry < R, it is inside the radius of convergence of
o |ax|z® (see Lemma 1), so 332, My, is a convergent series of positive numbers. Fur-
thermore the functions f, = apaz® satisfy |fy(z)] < My, for |z| < R;. By the Weierstrass
M-test, 322, arz® converges uniformly to a function f(x) on [— Ry, Ry].

Note that since each fi is continuous and the convergence is uniform, the limit function
f is continuous on [—Ry, Ry].

Proposition 6. (Ross 26.2) If the power series .22 azz® has radius of convergence R,
then the sum f(z) = 332, apz® is continuous on (—R, R).

Proof: Tt is enough to show that f is continuous at any = € (—R, R). Since |z| < R,
there exists Ry with |z] < R; < R. Since the series converges uniformly on [—R;, Ry] by
Proposition 5, the limit is continuous on [— Ry, R;], hence at z.

Note that even though the limit function is continuous on (— R, R), the convergence is not,
in general, uniform on (—R, R). As R; — R, the uniform convergence given by Proposition
5 may become harder and harder to achieve, in the sense that larger and larger Ns are
required for any given e.

Integration and differentiation of power series.

a
Lemma 2. Suppose that for a power series Y7o, apx® the limit limy o |ﬂ| =0
Qy

exists (3 can be 0, oo or anything in between), so that 372, axx* has radius of convergence
R = 1/B3. Then the associated power series 372, kazz* ! and 332, ﬁakaﬁk“ also have
radius of convergence R.

Proof: To follow the regular construction explicitly, let b; = (i + 1)a;41 and ¢; = %aj_l,
so that

> kagz*t =Y b’ and Y apz™ =" cad.
k=0 i=0 o k1 j=1
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first associated power series also has radius of convergence R = 1/. On the other hand
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associated power series also has radius of convergence R.

Proposition 7. (Ross, 25.2) Let ( f,,) be a sequence of continuous functions defined on [a, b]
which converges uniformly on [a, b] to the function f. Then limy, s [° fo(z) dz = [ f(z) dz.

Note that proof requires uniform convergence.

Proposition 8. (Ross, 26.4) If the power series f(x) = 332, arz* has radius of convergence



R > 0, then for any z with |z| < R,

) dt = i
[roa=3 7

Proof: On the interval [—x, z] the series converges uniformly (Proposition 5); this means
that the sequence of partial sums g,(z) = >7_, azz® converges uniformly to f; so by Propo-
sition 7,
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This proposition means that a uniformly convergent power series can be integrated term
by term.

Proposition 9. (Ross, 26.5) If the power series f(x) = Y232, arz® has radius of convergence
R > 0, then f is differentiable on (—R, R) and for |z| < R, f'(x) = 2, kagx* L.

Proof: By Lemma 2, the series g(t) = Y32, kat* ! also has radius of convergence R, so
we can apply Proposition 8 and integrate it term by term from 0 to x:
T © 1
t) dt = 2P =N gah = f(x) — ao.
[o0a=3—— z k :

Now differentiate both sides. By the Fundamental Theorem of Calculus, (d/dz) [y g(t) dt =
g(x), whereas (d/dz)(f(x) — ag) = f'(x).

Some important examples.
We are now in a position to prove (with a little bit of calculus) that the three series
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are equal to e”, sinx and cos z, respectively.

Note that all three series have radius of convergence R = oo, so the functions f,g,h
are continuous on (—oo,00). Furthermore by Proposition 9, each of them is differentiable
with derivative given by another power series with R = oo, so the derivatives themselves are
differentiable, and so on: each of f, g, h is infinitely differentiable on the whole line.
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1. Differentiating f term by term gives back the same series. Since we know by Proposi-
tion 9 that this series represents f’, the function f satisfies the differenial equation ' = f,
with initial condition (as can be checked from the series) f(0) = 1. Now some calculus: we
know from the Chain Rule that f'/f = (In(f))’, and so

[ de =) - () = (),
using the initial condition. On the other hand since f'/f =1,

/Ox J}ég dt—/oxldt—x.

T

So In(f(x)) = x. Exponentiating both sides gives f(x) = €”.

2. Differentiating g term by term gives exactly the series h, and differentiating h term
by term gives the series g with a minus sign. By Proposition 9, h = ¢’ and —g = b’ = ¢,
so the function g satisfies the differenial equation ¢” = —g, with initial conditions (as can
be checked from the series) ¢(0) = 0 and ¢'(0) = h(0) = 1. This differential equation, with
these initial conditions, is also satisfied by the function sinx.

Proposition 10. Suppose p(z) and g(z) are defined for co < 2 < oo and are both solutions
of the equation y” = —y with initial conditions y(0) = 0,%'(0) = 1. Then p(z) = ¢(x) for all
T.

Proof: Consider the difference u = p — ¢. It also satisfies v” = —u, but with initial
conditions u(0) = 0,4’ (0) = 0. Writing v’ = v transforms the second-order equation u” = —u
into the equivalent set of two coupled first-order equations ' = v and v = —u; the initial
conditions are now u(0) = 0,v(0) = 0. Define a new function £ = u? + v2. Note that
E(0) = 0. Calculating E’ using the Chain Rule gives E’ = 2uu’ + 2vv'; substituting v’ = v
and v' = —u gives E' = 2uv 4 2v(—u) = 0. From calculus we know that a function defined
on (—o00,00) (or on any interval) with zero derivative must be constant. Therefore £ must
be constant, and since F(0) = 0, that constant value must be 0. Going back to the definition
of F, this means u?+4v? = 0, which is only possible if u and v are everywhere 0. In particular
u = 0 so p = q everywhere.

Proposition 10 implies that the function f defined by the power series, and the function
sin, are the same function.

3. This argument could be repeated to prove that h(z) = cosz. But it’s enough to
observe that h(z) is the term by term derivative of the series g(x), and so by Proposition
9 it is the derivative of the function defined by g(z). Since we have just established that
g(x) = sinz, it follows that h(z) = ¢'(x) = cosx.
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