
MAT 312/AMS 351 Spring 2012 Review for Midterm 2

§1.6 Understand the principle of factorization-based public-key codes, as
explained in the Example on p.72. Try Exercises 12, 13 on pp.76,77.

§4.1 Remember that in the product permutation πσ the σ permutation is
performed first. Know simple examples, say with n = 3, where πσ 6= σπ. Be
able to read off the inverse of a permutation from its “two-row” representation,
p.152 (Exercise 2 p.158). Know the definition of a cycle (p.152) and be able
to represent any permutation (given, for example, in “two-row” notation) as a
product of disjoint cycles. Be comfortable myltiplying cycles (p.156). Exercise
4 p.158.

§4.2 Understand that powers of a single permutation multiply following the
law of exponents (Theorem 4.2.1), and that (πσ)r = πrσr if πσ = σπ and not,
in general, otherwise. Understand why every permutation π of the n objects
1, 2, . . . , n, i.e. π ∈ S(n), has some power equal to the identity (Theorem 4.2.2),
and the definition of the order of a permutation, p.161. Understand that if
π is a cycle of length k, then the order of π is exactly k (Theorem 4.2.4).
Understand why, if π is the product of disjoint cycles π = τ1 · · · · · τp, then
o(π) = l.c.m.(o(τ1), . . . , o(τp)). Exercises 6, 7, 10 p.168.

Understand that the sign sgnπ of a permutation π ∈ S(n) can be defined as
+1 or −1 so that if σ, π ∈ S(n) then sgn(σπ) = sgnσ · sgnπ and the sign of any
transposition is −1. Understand how every cycle of length k can be written as
a product of k − 1 transpositions (Theorem 4.2.10), and consequently has sign
(−1)k−1. Understand how this calculation can be extended to any permutation
(Theorem 4.2.11).

§4.3 Understand that the set S(n) with the operation (σ, π) → σπ satisfies
conditions (G1), . . . , (G4) (p.170) and is therefore a group. [(G1) is often
incorporated into the definition of the operation as a function from G × G

to G.] Be comfortable with the notation e or 1 for the unit element when the
group is described multiplicatively, and 0 when the group is described additively
(only done if the group is commutative). Know how to prove Theorem 4.3.1
(uniqueness of identity and of inverses). Be familiar with Examples 2 (Zn,
addition) and 3 (Gn, the invertible elements of Zn, multiplication). Understand
that the set of permutations in S(n) which have even order is a subgroup (the
“alternating group” A(n)) of S(n). Understand that the set of 2 × 2 matrices
with non-zero determinant form a group under matrix multiplication. [Here
you need to check (G1); it is satisfied because the determinant det(AB) of
the product of two matrices is the product detAdetB of their determinants].
Examples 2 and 3 give subgroups. Exercises 2, 3, 8.

§5.1 Understand that the “arithmetic” of elements in a group is completely
similar to what we are used to from multiplication of non-zero real [or rational]
numbers except that elements don’t commute, in general. This is how to under-
stand Theorem 5.1.1 and Examples 1, 2, 3, p.203. Furthermore the definition
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and calculus of powers and order are exactly what we did for permutations.
Subgroups are defined explicitly on p.206 (we already have some examples from
permutations and from matrices; see Examples 3, 4, 5 p.208). Note part (iii)
of Theorem 5.1.5 gives a 1-line characterization of a subgroup. Understand the
definition of proper subgroup. Be able to prove Theorem 5.1.6 (intersection of
2 subgroups is a subgroup) and Theorem 5.1.7 (set of (positive and negative)
powers of an element g is a subgroup; called the “cyclic” subgroup generated
by g, and denoted 〈g〉. Understand Examples 1, 2, 3, 4 pp.209-210. Review
homework exercises.

§5.2 Understand the definition of left coset aH and right coset Ha corre-
sponding to a subgroup H of a group G and an element a ∈ G. Understand the
Notes on pp.212-213, and the 4 Examples given pp.213-214. Be able to repeat
the analysis of Example 3 for different G and H, e.g. G = S(4), H = 〈(1234)〉,
etc. Be able to prove Theorem 5.2.1 (different cosets do not overlap). Un-
derstand how this implies Theorem 5.2.2: If the order of G is finite, any two
cosets of a subgroup H have the same number of elements. And how this in
turn implies Theorem 5.2.3 (Lagrange’s Theorem): the order of H must divide
the order of G. (The quotient is called the index of H and written [G : H]).
Understand this special case: the order of the element g ∈ G is the order of
the subgroup 〈g〉 and therefore must divide the order of G. Exercises 1, 2, 5
pp.218-219.

§5.3 Besides the definitions in the book, understand that for groups G1, ∗
and G2, ◦ a function θ : G1 → G2 is a homomorphism if it respects the group
operations: θ(g ∗ g′) = θ(g) ◦ θ(g′). A homomorphism which is a bijection (one-
one and onto) is an isomorphism. Example 3 p.221 is a homomorphism but not
an isomorphism. Be able to prove Theorem 5.3.1 for homomorphisms as well as
for isomorphisms. Be able to explain why G5 and G8 are not isomorphic, even
though they are both abelian (commutative) with four elements. Understand
the definition of the direct product G × H of groups G and H. Be able to
construct an isomorphism G8 → C2 × C2 (we use Cn for the cyclic group of
order n, written multiplicatively). Be able to prove that if (m,n) = 1 then
Cm ×Cn is cyclic; or, in additive notation, Zm ×Zn is cyclic. Be able to prove
that every group of prime order is cyclic. Understand the argument p.226 that
if G is a group of of order 6 with no element of order 6 then it must have an
element of order 3.
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