
MAT 312/AMS 351. Notes on binary codes: linear, error-detecting
and correcting, efficient.

§1. A binary code C of length n is a subset of the set Bn of all binary
n-tuples (x1, x2, . . . , xn) where xi = 0 or 1.

The set Bn forms a group under componentwise addition mod 2. (In this way
it is isomorphic to Z2×· · ·×Z2, n times). Moreover the scalar product Z2×Bn →
Bn, which takes (0, (x1, x2, . . . , xn)) to (0, 0, . . . , 0) and (1, (x1, x2, . . . , xn)) to
(x1, x2, . . . , xn), makes Bn into a Z2-vector space; the operations are exactly
analogous to vector addition and scalar multiplication in Rn.

The binary code C is called linear if it is a subgroup of Bn (this is the same
as requiring it to be a subspace of the vector space Bn).

We define (as on p.234) the distance between two codewords c1 and c2 as
the number of places in which they are different (this number can range from 0
to n). Then the minimum distance between different codewords in C measures
the possibilities of C for error-detection and correction (Theorem 5.4.2); we’ll
call this number the quality of the code, and write it Q(C).

If the code C is linear, then Q(C) can be determined from inspection of the
set of codewords: it is the smallest number of 1s (the “weight”) of a non-zero
codeword (Theorem 5.4.3).

§2. One way of defining a linear code (this presentation is different from
the book’s) is to consider a linear transformation h : Bn → Bm for some
m < n and to define C = CH as the “kernel” (or “null-space”) of h; this is the
set of all n-tuples x = (x1, x2, . . . , xn) which h sends to the identity 0 ∈ Bm

(0 = (0, . . . , 0), m components). In set notation, Ch = {x ∈ Bn|h(x) = 0}.
(Note that in this context “linear transformation” means no more than the
requirement h(x1 + x2) = h(x1) + h(x2)).

The reason for defining a linear code this way is that when we express the
linear transformation h by a matrix, useful information may be determined
directly from that matrix, without a detailed examination of the set of code-
words.

We will follow the convention of the book by representing n-tuples as row
vectors, and representing h by a matrix acting on the right. Thus if n = 3, m =
2, and h is the linear transformation: h((x1, x2, x3)) = (x1 + x3, x1 + x2 + x3).
The corresponding matrix, with respect to the standard bases in B3 and B2

would be, with our convention of right action,

H =





1 1
0 1
1 1





1



since

(x1, x2, x3)





1 1
0 1
1 1



 = (x1 + x3, x1 + x2 + x3).

§3. One useful type of transformation (matrix) is a canonical parity-check

matrix. In this case, with m and n as above, H has the form of an (n−m)×m

matrix A on top of an m×m identity matrix.
Example:

n = 6, m = 3, A =





1 1 0
0 1 1
1 0 0



 , H =

















1 1 0
0 1 1
1 0 0
1 0 0
0 1 0
0 0 1

















.

In this case, (x1, x2, x3, x4, x5, x6)H = (x1 + x3 + x4, x1 + x2 + x5, x2 + x6). If
we consider x = (x1, x2, x3, x4, x5, x6) as a word of the code defined by xH = 0,
we can interpret x4, x5, x6 as parity check bits: x4 should be 1 if the number of
1s among x1 and x3 is odd; x5 should be 1 if the number of 1s among x1 andx2

is odd; x6 should be 1 if x2 is 1.

§4. Error-detection and correction. Note first (compare the examples above)
that if e1 = (1, 0, . . . , 0) is the first standard basis vector for Bn, then e1H
produces exactly the first row of H; similarly e2H is the 2nd row of H, etc.
Now the collection {e1, e2, . . . , en} comprises all the words in Bn with exactly
one “1”. Consider the code C defined by xH = 0. If H has no non-zero
rows, then none of e1, e2, . . . , en can satisfy that equation. Consequently all the
nonzero words of C have at least two “1”s. This argument proves:

Proposition 1. If the matrix H has no row with all zeros, then the code defined
by xH = 0 can be used for single-error detection.

Example: The code C defined by the 6× 3 matrix H above can be listed by
assigning arbitrary values to the bits numbered 1, 2, 3 (we can think of these
as information bits; then the values of bits 4, 5, 6 are determined as explained
above. There will therefore be eight words in C; it is convenient to list the
information parts using the binary numbers for 0 to 7, and then compute the
check bits.

word no. in binary complete word
0 000 000000
1 001 001100
2 010 010011
3 011 011111
4 100 100110
5 101 101010
6 110 110101
7 111 111001

.

2



Proposition 2. If in the matrix H no row is zero and no two rows are equal,
then the code defined by xH = 0 can be used for single error correction.

Proof: We need to show that every nonzero code-word has at least three “1”s.
We already know that since H has no zero row there cannot be a codeword with
exactly one “1”. On the other hand, a codeword with exactly two “1”s would
be of the form ei+ej , with i 6= j. (For example, (010100) = e2+e4). Applying
H to such a word would give the sum of the like-numbered rows. (For example,
with H above, (010100)H = (e2 + e4)H = (011)+ (100) = (111)). The product
with H can only come out to be zero of those two rows add up to zero, i.e. if
they are identical. So if no two rows of H are equal, then no word x satisfying
xH = 0 can have exactly two “1”s. Since exactly one “1” has been excluded, a
nonzero word must have at least three “1”s. Q.E.D.

§5. Efficiency. We would like to maximize the ratio of information bits to
check bits and still have a code admitting single error correction. Suppose we
have r ckeck bits; we can suppose our matrix H is in canonical parity-check
matrix form, so the bottom r rows are e1, . . . , er. There are 2r possible length
r binary numbers, running from (0, 0, . . . , 0) to (1, 1, . . . 1). As extra rows in
our matrix we must exclude (0, 0, . . . , 0) as well as the rows e1, . . . , er we used
at the bottom. This leaves 2r − 1 − r possiblities; each one corresponds to a
possible information bit. To maximize efficiency, we use them all. For example,

H =





















0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1





















has 3 check-bits and 23 − 1 − 3 = 4 information bits. Such a code is called a
perfect code; it can be shown to be the most efficient way of encoding 24 symbols

3



with single error detection. Similarly

H =





















































0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





















































has 4 check-bits and 24 − 1− 4 = 11 information bits; it is also a perfect code;
the most efficient way of encoding 211 symbols with single error detection.

§6. Hamming codes. Suppose x is a codeword in the perfect code C defined
as above by a matrix H. A transmission error in the i-th position means that a
0 has been changed to a 1 or vice-versa; in either case, the transmitted word is
x+ ei. Applying H to the transmitted word gives H(x)+H(ei) = 0+H(ei) =
the ith row of H. In the matrix defining a perfect code with r check bits,
each binary number between 1 and r appears as a row. If the rows of H are
rearranged so that the ith row is exactly the binary number i, and that new
matrix is used to define the code, then the result of applying H to a transmitted
word will be either 0 (if there was no error) or the binary number of the bit where

the error occurred.

Example (r=3).

H =





















0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1





















.

Here the check-bits are in position 1, 2, 4. The 16 words of the code can
be efficiently generated by using (0000) up to (1111) for the information bits
x3, x5, x6, x7 and adjusting the check bits accordingly: x1 = x3 + x5 + x7,
x2 = x3 + x6 + x7, x4 = x5 + x6 + x7.

4



word no. in binary complete word
0 0000 0000000
1 0001 1101001
2 0010 0101010
3 0011 1000011
4 0100 1001100
5 0101 0100101
6 0110 1100110
7 0111 0001111
8 1000 1110000
9 1001 0011001
10 1010 1011010
11 1011 0110011
12 1100 0111100
13 1101 1010101
14 1110 0010110
15 1111 1111111

.

(Here the checkbits are shown in italic). This is a Hamming code.

Suppose that word number 6, x = (1100110), was transmitted with an error
in bit 5, so as x′ = (1100010). Applying H to the transmitted word gives
x′H = (101), signalling an error in position 5. The word can then be corrected
by adding (0000100) to x′. Thus the Hamming code doesn’t just allow a single
error to be corrected; it shows you immediately how to do it.

Exercises:

1. Consider the code CH defined by xH = 0 for this matrix H:

H =

















0 0 1
0 1 1
0 1 1
0 0 0
1 1 0
1 1 1

















.

List the eight codewords of CH . (I.e., give all the solutions of (x1, x2, x3, x4, x5, x6)H =
0). Give an example of a single error, in the transmission of one of the
codewords of CH , which cannot be detected.

2. Consider the code CH defined by xH = 0 for this matrix H:

H =

















0 0 1
0 1 1
0 1 1
1 0 0
1 1 0
1 1 1

















.

5



List the eight codewords of CH . (I.e., give all the solutions of (x1, x2, x3, x4, x5, x6)H =
0). Give an example of a single error, in the transmission of one of the
codewords of CH , that cannot be corrected.

3. Suppose the Hamming code of §6 is used to transmit text, by assigning
A to word 0, B to word 1, ..., P to word 15, following alphabetical order.
An 8-letter message is encoded and transmitted. What is received is

0101100 0010110 0010100 1010101 1001001 1001101 0010000 0111101.

Assuming that each codeword has been transmitted with at most a single
error, reconstruct the original message.

Anthony Phillips
April 10, 2012

6


