MAT 312 Spring 2009 Review for Final
FINAL IS CUMULATIVE: ALSO USE REVIEW SHEETS FOR MIDTERMS I AND II.

Final is “open book.” You may consult Laufer, and you may use a TI-82 ... TI-86-class
calculator. No computer algebra (no TI-89, for example). No cell phones.

9.1 Be able to use the Euclidean algorithm to calculate the greatest common divisor g = (a, b) of two integers
a and b. Also be able to run the algorithm backwards to find integers A, p such that g = Aa + pub. Examples
9.4, 9.5. Understand how to add and multiply equivalence classes modulo n (“mod n”) as in Proposition
9.3. Understand Theorem 9.4: the equation ax = 1 in Z, has a unique solution if and only if (a,n) = 1.
Example 9.11. Note that this involves the A, i from the Euclidean Algorithm.

9.2 Understand the of definition of a ring and know the elementary examples Z, Z,, (for any positive integer
n) as well as Q, R, C. Review arithmetic, absolute values, re® notation for complex numbers. Understand
that if R is a ring, the set R[X] of polynomials with coefficients in R is also a ring, with the usual addition
and multiplication of polynomials. (Definition on p. 430). Understand what it means for an element of
a ring to be invertible. Understand the proof of Proposition 9.10. Be able to carry out “polynomial long
division” in R[X] when the divisor has invertible leading coefficient, and understand why that requirement is
necessary in general; Theorem 9.11. Understand how p € R[X] determines a function R — R (definition on
p. 436), but that for a general R, the polynomial is not determined by its values (Example 9.27). Understand
the Remainder Theorem (Theorem 9.12) - this will be very important in section 9.3.

9.3 Have a good idea of how the Fourier series
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fx) ~ap+ Z (am cosmz + by, sin mz)
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is calculated for a real-valued function defined on [0, 27] or for a periodic function of period 27 (the function
may have a finite number of jump-discontinuities in [0, 27]). Le.
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ag = — (z) de,  apm=— (z)cosma dx, b, = — (z) sinmz dz.
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Be able to calculate the Fourier series for f(z) =1 (0 <z <m)and =—1 (7 <z < 27), and other simple
functions. Be comfortable with going back and forth between these Fourier series and the complex Fourier
series

f(z) ~ Z Cme” M

U = Cm + C—my, by = i(—cm + )
ag = cg and for m > 0.
Cm = %(am +ibm), Com = %(am — ibm)
In particular the integral formulas become
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Cm = — f(z)e™® dx
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for any m from —oo to oc.

The Discrete Fourier Transform comes from the left-hand-sum approximations to these integrals. For N
equal subdivisions the approximation to the ¢, integral is
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(we take z = 0, 2]\7;,22” 32”... multiply the value of the integrand by 57, and sum). This operation only
looks at the N values f(0), f(2]\7,r)7 ..f((N—=1)2%); so given any N-vector (fo,. ., fnv—1) we define its Discrete

Fourier Transform to be the vector (co, ..., cy—1) given by

N—
ik 3 _ L Z
N
k=0

| —
i
~

k=0
where w = €%, a primitive Nth root of 1 (Definition 9.4).

The Fast Fourier Transform requires specializing to N = 2", and putting together several pieces of informa-
tion.

o We can interpret 0" fi(w™)* as the value at w™ of the polynomial pf(z) = fo+ fiz+- -+ fy_1aN 1
and consequently, by the Remainder Theorem, as the remainder when py(z) is divided by (z — w™).

e In any ring, if a = bc the remainder r of p when divided by ¢ can be calculated from the remainder
r’ of p when divided by a: r is exactly the remainder of v/ when divided by ¢. (Because p = aq¢’ + 1’
and 7 = cqg+r give p = beq' + 1’ = beq + cq +r = ¢(bg’ + q) + r; also r < ¢ is automatic. (This is
Proposition 9.14)

o (2% —1) = (¥ —1)(@®" " 41). The first factor splits again in the same way. For the second, we
note that, since w is a primitive 2"-th root of 1, we have w2 = —1,s0 (22"  +1) = (#¥"  —w?" ),
again a difference of squares, and the splitting can continue. In general (ka + ka) may be rewritten
as (22 —w? w? ) = (a2 —w T If k< n—1then w? 2" = w2 (142" and the factoring
can be repeated. For example 28 — 1 = (2% — 1)(2* +1). Here w = €% and w* = —1. Soz* + 1 =
ot —wt = (22 —w?)(2? + w?). As above, (22 4+ w?) = (22 —w®) = (z 7w3)(9:+w3) =(z—wd)(z—w7).

e Last but not least. When ag + a1z + -+ ap_ 12" + apx™ + - - - ag, 122"t is divided by (2™ — ¢) the
remainder is ag + 012 + ‘12" (@ + e+ a2n71xn )= (ao +can) + (a1 + cani1)r +
~(ap—1 + cagp_1)z"™ (Proposmon 9.16)

Understand all the steps in this calculation:

fra” (f3 + fr)a? (fi+fs+fa+ fr)z (fo+ fa+ fa+ fo) + (fi+ fs + f3+ fr) = 8co
+ fex® +(f2 + fo)a? +(fo+ fo+ fat fo) (fot+fatfotfo) = (fi+[fs +f3+ fr) =8c
+f52° +(f1+ f5)x (i+fs—f3—fr)z (fo+ fa—fa—fo) +i(f1+ fs — fs — fz) = 8ca
+ faa? _ +(f0+f4) N totSfa—Sfo—So) | | (ot fa—fo—fo) —ilfs +f5 = fs — fr) =8¢
+ faa? (fs — fr)a? (fi—fs+i(fs— fr) (fo—fa+i(fo— fo) +w(fi — fs +i(fs — fr)) = 8c
+ fo? (f2—fa)flf2 +(fo = fa) +i(f2 — fo) (fo—fa+i(fa— fo) —w(fi — f5 +i(fs — f7)) = 8cs
+frz! +(f1 = f5)x (f1 = f5) —i(fz — fr) (fo— fa—i(fa — fo) +iw(fi — fs —i(fs — fr)) = 8cs
+/fo (fo*f4) +(fo — fa) —i(fo — fo) (fo— fa—i(f2a — fo) —iw(f1 — f5s —i(f3 — f7)) = 8¢y

First arrow: remainder after division by (RADB) (z* — 1) (top), RABD (x4 + 1) (bottom).

Second arrow: from top to bottom, RADB (z2 — 1), (2% + 1), (22 —4), (22 + 4).

Third arrow: from top to bottom, RADB (x—1), (x+1), (z —1), (x+1), (r —w), (2 +w), (x —iw), (x +iw).
[=RADB (z — w?), (z — w?), (x — w?), (z — W), (z — wh), (z — W°), (x — W3), (z — w")]



9.4 In matrix form, the Discrete Fourier Transform is

1
— —of
°=N

Jfnv-1) and Qi = Wk 0 <k < N -1

where ¢ = (cg,¢1,...,¢n—1) is the transform of f = (fo, f1,. ..
Understand why €2 is invertible; in fact if the matrix A is defined by A;; = w7k then

with w = e,
AQ =QA =N -1, N times the identity matrix. So if

1
— —Qf
TN

then
f = Ac.

Be able to calculate f from ¢ by hand for small values of N



