
Shannon’s noiseless coding theorem

We are working with messages written in an alphabet of symbols x1, . . . , xn

which occur with probabilities p1, . . . , pn. We have defined the entropy E of
this set of probabilities to be

E = −
n∑

i=1

pi log
2
pi.

These pages give a proof of an important special case of Shannon’s the-
orem (which holds for any uniquely decipherable code). We will prove it for
prefix codes, which are defined as follows:

Definition: A (binary) prefix code is an assignment of binary strings
(strings of 0s and 1s, “code words”) to symbols in the source alphabet so
that no code word occurs as the beginning of another code word.

Note that message written in a prefix code can be unambiguously decoded
by “slicing off” code words as they occur.

Theorem: For any binary prefix code encoding x1, . . . , xn the average
length of a word must be greater than E. More explicitly, setting ℓi as the
length of the code word for xi,

n∑

i=1

piℓi ≥ E.

Our proof of this theorem will involve two lemmas.

Lemma 1: (Gibbs’ inequality). Suppose p1, . . . , pn is a probability

distribution (i.e. each pi ≥ 0 and
∑

i pi = 1). Then for any other probability
distribution q1, . . . , qn with the same number of elements,

n∑

i=1

pi log
2
pi ≥

n∑

i=1

pi log
2
qi.

(Notes: 1. The sum on the right may diverge to −∞ if one of the qi is
zero and the corresponding pi is not. As remarked before, pi = 0 is not a
problem since limp→0 p log

2
p = (1/ ln 2) limp→0 p ln p = 0 by L’Hôpital’s rule.

1



2. The inequality is usually stated

−
n∑

i=1

pi log
2
pi ≤ −

n∑

i=1

pi log
2
qi.

Our formulation avoids many minus signs, even though the numbers involved
are both negative.

3. For a heuristic motivation consider the case where all the pi are equal.
Each pi = 1

n
and

n∑

i=1

pi log
2
pi =

1

n

n∑

i=1

log
2
pi =

1

n
log

2
(p1 · p2 · . . . · pn).

Substituting q1, . . . qn for p1, . . . pn gives 1

n
log

2
(q1 · q2 · . . . · qn). When the sum

of the side-lengths is fixed, the maximum volume of a rectangular solid is
obtained when all the sides are equal; so since

∑n
i=1

qi =
∑n

i=1
pi = 1, the

product q1 · q2 · . . . · qn must be less than or equal to p1 · p2 · . . . · pn in this
case.)

Proof: (from http : //en.wikipedia.org/wiki/Gibbs%27 inequality) Since
log

2
pi = ln pi

ln 2
and ln 2 > 0 it is enough to prove the inequality with log

2

replaced by ln wherever it occurs. Additionally, since if any one of the qi is
zero and the corresponding pi 6= 0 the inequality is automatically true; so we
may assume (∗) that qi 6= 0 whenever pi 6= 0.

We use the following property of the natural logarithm:

ln x ≤ x − 1 for all x > 0, and ln x = x − 1 only when x = 1.

In order to avoid zero denominators in the following calculation, we set I =
{i|pi > 0}, the set of indices for which pi is non-zero (and therefore, by (∗),
qi is also non-zero). Then we write

∑

i∈I

pi ln
qi

pi

≤
∑

i∈I

pi(
qi

pi

− 1) =
∑

i∈I

qi −
∑

i∈I

pi =
∑

i∈I

qi − 1 ≤ 0.

Since ln qi
pi

= ln qi − ln pi, this chain of inequalities gives

∑

i∈I

pi ln qi ≤
∑

i∈I

pi ln pi.

2



Now
∑

i∈I pi ln pi =
∑n

i=1
pi ln pi since the new terms all have pi = 0; and∑

i∈I pi ln qi ≥
∑n

i=1
pi ln qi since new terms are ≤ 0. I.e.

n∑

i=1

pi ln qi ≤
∑

i∈I

pi ln qi ≤
∑

i∈I

pi ln pi =
n∑

i=1

pi ln pi

yielding Gibbs’ inequality.

Lemma 2: (Kraft’s inequality for binary prefix codes) Let x1, . . . , xn

be the symbols in our alphabet, and suppose we have encoded them as bi-
nary words using a prefix code. Let ℓ1, . . . , ℓn be the lengths of the words
corresponding to x1, . . . , xn. Then

n∑

i=1

2−ℓi ≤ 1.

Proof: Note that a (binary) prefix code can always be represented as a
binary tree: as a word is read, the tree branches right or left according as
the next bit is 0 or 1. Each word occurs at the end of a unique “branch.”

Set L = maxi ℓi. Then the tree corresponding to our prefix code can
be extended to a tree where every branch has length L, and there are 2L

branches. A code word of length ℓi corresponds to pruning off from this tree
all the possible extensions of the corresponding branch. There are 2L−ℓi of
these. The total number of deleted branches is then

∑
i 2

L−ℓi ; since this sum
must be smaller than the total number of branches, we have

n∑

i=1

2L − ℓi = 2L
n∑

i=1

2−ℓi ≤ 2L,

so
∑n

i=1
2−ℓi ≤ 1, Kraft’s inequality.

Proof of Shannon’s theorem: Take x1, . . . , xn and p1, . . . , pn as in the
statement, suppose the xi have been encoded in a binary prefix code, and
let ℓi be the length of the code word for xi. Then by Kraft’s inequality∑

i 2
−ℓi ≤ 1. Call this number 1/C, so that C2−ℓ1 , . . . , C2−ℓn is a probability

distribution, and can play the role of {qi} in Gibbs’ inequality, which then
tells us

n∑

i=1

pi log
2
pi ≥

n∑

i=1

pi log
2
(C2−ℓi) =

n∑

i=1

pi(log
2
C − ℓi) = log

2
C −

n∑

i=1

piℓi.

3



Now put back the minus signs and remember that since 1/C ≤ 1 we have
C ≥ 1 and log

2
C ≥ 0. We obtain

n∑

i=1

piℓi ≥ −
n∑

i=1

pi log
2
pi + log

2
C ≥ −

n∑

i=1

pi log
2
pi,

as required.

4


