
MAT 312/AMS 351
Applied Algebra
Midterm 2 – Solutions

1. (a) (10 points) Show that the groups Z3×Z3 and Z9 are not isomorphic. (Remember
that two groups are isomorphic if one can be considered a re-labeling of the other:
the same algebra with different tags).

Solution In Z3 × Z3, every element except 0 has order 3, since (a, b) + (a, b) +
(a, b) = (a+a+a, b+ b+ b) and 1+1+1 = 2+2+2 = 0 in Z3. In Z9 the element
1 has order 9. So the algebraic structures are different.

(b) (15 points) Show that the groups Z3 × Z2 and Z6 are isomorphic.

Solution It is enough to show that Z3 × Z2 is cyclic of order 6. We can use
either (1, 1) or (2, 1) as generator:

(1, 1)
(1, 1) + (1, 1) = (2, 0)
(1, 1) + (2, 0) = (0, 1)
(1, 1) + (0, 1) = (1, 0)
(1, 1) + (1, 0) = (2, 1)
(1, 1) + (2, 1) = (0, 0).

The second version of the test had Z2 × Z3.

2. (25 points) The group Sn of all permutations of n distinct objects, say, 1, 2, 3, . . . n
has order n!. Show that for every k, 1 ≤ k ≤ n, Sn has a subgroup of order exactly k,
by exhibiting such a subgroup.

Solution The cyclic subgroup generated by (12) has 2 elements: {(12), (12)2 = e}.
The cyclic subgroup generated by (123) has 3 elements: {(123), (123)2 = (132), (123)3 =
e}. Similarly the cyclic subgroup generated by any k-cycle, for example (123...k) has
order k:

1 2 3 ... k
ց ց ց ց ց

1 2 3 ... k
ց ց ց ց ց

1 2 3 ... k
ց ց ց ց ց

(after k steps, each element is back where it started). So for each k ≤ n the cyclic
subgroup < (123...k) > has order k.
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3. (25 points) Two colorings of the vertices of an equilateral triangle are considered equiv-
alent if a symmetry of the triangle takes one to the other. In how many non-equivalent

ways can one color the vertices of an equilateral triangle with 5 colors?

Solution We apply Burnside’s Theorem. If the triangle has vertices A,B,C the
group G of symmetries is {e, (AB), (AC), (BC), (ABC), (ACB)}. All possible distinct
colorings are invariant under e: there are 53 of them, since each vertex can have any
one of the 5 colors; so |Xe| = 53. The colorings invariant under (AB) must give A and
B the same color; the color for C can be chosen independently, so there are 52 ways
of doing this, and |X(AB)| = 52. Same for X(AC) and X(BC). The colorings invariant
under (ABC) must give all 3 vertices the same color; this can be done 5 ways. So
|X(ABC)| = 5 and same for X(ACB). Burnside’s Theorem says the number of distinct
colorings up to symmetry is

k =
1

|G|

∑

g∈G

|Xg|.

In our case this gives (1/6)(53 + 3 · 52 + 2 · 5) = 35.

The other test had 4 colors, with number of distinct colorings up to symmetry equal
to (1/6)(43 + 3 · 42 + 2 · 4) = 20.

4. (25 points) The group S4 has 4! = 24 elements:

e
(12), (13), (14), (23), (24), (34)
(123), (132), (124), (142), (134), (143), (234), (243)
(1234), (13)(24), (1432), (1324), (12)(34), (1423), (1243), (14)(23), (1342)

.

The subgroup H2 = {all permutations that fix the element 2} has 6 elements:

e, (13), (14), (34), (134), (143).

What are the four left cosets determined by H2?

Solution The first coset is H2 itself: {e, (13), (14), (34), (134), (143)}.

To get another coset take any element not in H2, e.g. (12), and calculate (12)H2 =
{(12), (132), (142), (12)(34), (1342), (1432)}.

For a third coset, take any element not in H2 or in (12)H2, e.g. (23), and calculate
(23)H2 = {(23), (123), (23)(14), (234), (1234), (1423)}.

For the last coset you can take what’s left over, or take an element not in any of the
first 3, say (24), and use (24)H2 = {(24), (24)(13), (124), (243), (1324), (1243)}.

The other test used H3, similarly defined, and the cosets were:
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H3 = {e, (12), (14), (24), (124), (142)},

(13)H3 = {(13), (123), (143), (13)(24), (1243), (1423)},

(23)H3 = {(23), (132), (23)(14), (243), (1324), (1432)},

(34)H3 = {(34), (34)(12), (134), (234), (1234), (1342)}.

3


