
MAT 310 Fall 2008 Review for Midterm 1

1.2 Fundamental concepts. F is a field (check Appendix C if you are not
completely comfortable with what a field is; main examples Q,R,C, but
also Z2 and Zp, p prime; understand why Z is not a field and why Z4 is not a
field.); V is a vector space over F. Example 2, Example 4. Check Examples

6, 7 for things that are not vector spaces. Understand how the “Cancellation
Law” follows from the axioms (Theorem 1.1) and how to derive the basic
facts in Theorem 1.2. Review homework exercises and 16, 17.

1.3 Subspaces. Understand Examples 3, 4. Be able to prove Theorem 1.4.
Understand Exercise 8,abde. Be able to prove the statement in Exercise 20.

1.4 Linear combinations. The fundamental concept in Linear Algebra! Be
able to work an example like Example 2: checking whether a given vector v

is a linear combination of some other vectors w1, w2, . . . , wk always reduces
to seeing if a certain set of linear equations has a solution. Exercise 3.

1.5 Linear dependence and independence. Be able to work an example like
Example 1: checking whether a set of vectors v1, v2, . . . , vk is linearly inde-
pendent always reduces to seeing if a certain set of equations has a non-zero

solution. Exercise 3. Be able to prove Theorem 1.6 (a subset of a linearly
independent set is linearly independent). Understand the proof of Theorem
1.7, paying attention to the details. Exercise 15.

1.6 Bases and dimension. Understand the definition “β is a basis of the
vector space V .” And how it is equivalent to the statement in Theorem 1.8.
Be able to prove Theorem 1.9: If a vector space V is generated by some finite
set S, then some subset of S is a basis for V . (“generates” defined on page
30). Checking that a set of vectors is a basis for V always means checking
two things: the set is linearly independent and it spans V . Exercises 8,9.

2.1 Linear transformation, null space, range. Know the definition of linear
transformation, and understand why T is linear if and only if T (cx + y) =
cT (x) + T (y) for every x, y ∈ V and every c ∈ F Exercise 7. Know some
examples, like Examples 2-7. Know for T : V → W the definition of the null-
space (also, “kernel”) N(T ) and the range (also, “image”) R(T ) and be able
to prove that if T : V → W is linear, then N(T ) is a subspace of V and R(T )
is a subspace of W . Understand the Dimension Theorem (Theorem 2.3) and
be able to apply it to prove Theorem 2.5. Be able to prove Theorem 2.6 (a
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linear transformation is completely determined by its values on a set of basis
vectors, and those values can be arbitrarily chosen). Exercises 10, 11, 12.

2.2 Matrix representation of a linear transformation. Understand the concept
of ordered basis, and why the order of the basis vectors matters in setting up
the matrix representation. (What happens to the matrix [T ]βα if the order of
the elements of α is changed? if the order of the elements of β is changed?).
Know what is meant by the “standard ordered basis” for Fn. Be able to
write down the entries of [T ]βα given V,W, T : V → W,α and β. Understand
(Theorem 2.7) why the set L(V,W ) of linear transformations from V to
W is itself a vector space, with the correct definitions of sum and scalar
product. Be able to prove Theorem 2.8 and be able to explain, using the
language of section 2.4, that once ordered bases α = (v1, . . . , vn) for V and
β = (w1, . . . , wm) for W have been chosen, the map []βα:L(V,W ) → Mm×n(F),
taking T : V → W to [T ]βα, is a vector-space isomorphism.

2.3 Composition of linear transformations, matrix multiplication. Under-
stand that when T : V → W and U : W → Z are composed as functions (i.e.
UT (v) = U(T (v))), if T and U are linear so is their composition UT . Know
the definition of matrix multiplication (page 87), and be able to show that
if α and β as above are orered bases for V and W , and if γ = (x1, . . . , xp) is
an ordered basis for Z then [UT ]γα = [U ]γβ[T ]βα (Theorem 2.11).

Understand also that the i-th column of [T ]βα is made up of the coeffi-
cients aji, j = 1 . . . m occurring when T (vi) is written as a linear combination
a1iw1+ · · ·+amiwm, and that if v = c1v1+ · · · cnvn is an arbitrary vector in V ,
then the coefficients of T (v) = d1w1 + · · · dmwm ∈ W are given by the matrix
product [T (v)]β = [T ]βα[v]α, where [v]α is the column vector (n × 1 matrix)
(c1, . . . , cn) and [T (v)]β is the column vector (m × 1 matrix) (d1, . . . , dm).
Exercises 12, 14ab.
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