MAT 200 SOLUTIONS TO HOMEWORK 6

OCTOBER 21, 2004

Section 4: 4.1, 4.2

4.1 To prove that there exists a unique point C satisfying

(1)

 $(m \angle BAC = \alpha) \land (|AC| = r) \land (C \text{ is in } H)$

we need to prove existence and we also need to prove uniqueness.

- **Existence:** By Protractor Axiom (3), there exists a ray \overrightarrow{AD} in halfplane H such that $m \angle BAD = \alpha$. By Exercise 3.1, there exists a point C on the ray \overrightarrow{AD} such that |AC| = r. Since $C \in \overrightarrow{AD}, \overrightarrow{AC} = \overrightarrow{AD}$ by Theorem 3.4. So, $m \angle BAC = m \angle BAD = \alpha$. Thus, such a point C satisfies (1).
- **Uniqueness:** Assume that C_1, C_2 are two points satisfying (1). Since $m \angle BAC_1 = m \angle BAC_2 = \alpha$, by uniquenes statement of Protractor axiom we have $\overrightarrow{AC_1} = \overrightarrow{AC_2}$. Since $|AC_1| = |AC_2| = r$ and C_1, C_2 are on the same ray starting at A, by uniqueness statement of Exercise 3.1, $C_1 = C_2$

(In fact, one could give a shorter proof, proving existence and uniqueness together.)

4.2 The counterexample

Using the Protractor Axiom, we may choose two points C and D such that lie on different sides of \overrightarrow{AB} , and $m \angle BAD < m \angle BAC$ (for example, by taking $m \angle BAD = \pi/4, m \angle BAC = \pi/3$). But since C and D are on different sides of $\overrightarrow{AB}, \overrightarrow{AD}$ is not inside the angle $\angle BAC$ (strictly speaking, this also requires proof — but since we didn't really give an accurate definition of "inside", we omit the proof. It could be done, e.g., using the crossbar theorem).

Thus, in this example $m \angle BAD < m \angle BAC$ but \overrightarrow{AD} is not inside the angle $\angle BAC$.

4.3 Denote $\alpha = m \angle BAC$. Let \overrightarrow{AD} be a ray which is on the same side of \overrightarrow{AB} as C and such that $m \angle BAD = \alpha/2$ (such a ray exists by Protractor Axiom). Then \overrightarrow{AD} is inside $\angle BAC$ (Theorem 4.2) and thus, by Protractor axiom, $m \angle DAC = \alpha - \alpha/2 = \alpha/2$, so $m \angle DAC = m \angle BAD$. This shows existence.

To prove uniqueness, note that if AD is a bisector, then we must have $m \angle BAD = m \angle DAC$. Since, by protractor axiom, $m \angle BAD + m \angle DAC = m \angle BAC$, we must have $m \angle BAD = m \angle BAC/2$. Similarly, id $\overrightarrow{AD'}$ is another bisector, then similar argument gives $m \angle BAD' = m \angle BAC/2$. Then $m \angle BAD = m \angle BAD'$, so by protractor axiom, $\overrightarrow{AD} = \overrightarrow{AD'}$. This proves uniqueness.

Section 5: 5.2, 5.3, 5.5, 5.6

5.2 The Gap:

The Protractor Axiom lets us find a point D such that $m \angle BCD = m \angle B'C'A'$, but we do not know if we can find this point on the segment AB. To do this we need to use Theorems 4.1 and 4.2.

Filling the Gap:

Apply the Protractor Axiom to find a ray \overrightarrow{CE} where E lies on the same half plane as B and $m \angle BCE = m \angle B'C'A'$. Since $m \angle BCA > m \angle B'C'A' = m \angle BCE$, by Monotonicity of Angles theorem (Theorem 4.2), the ray \overrightarrow{CE} is inside the angle $\angle BCA$. Now, by the Crossbar theorem (Theorem 4.1), this ray intersects the segment AB at some point, say D. By Theorem 3.4, $\overrightarrow{CE} = \overrightarrow{CD}$, so $m \angle BCD = m \angle BCE = m \angle B'C'A'$.

- **5.3** (1). By the definition of midpoint (Exercise 3.3), |AM| = |MC| and |DM| = |MB|. Also by Theorem 4.3, vertical angles are equal, i.e. $m \angle AMD = m \angle CMB$. So $\triangle AMD \cong \triangle CMB$ by SAS(Theorem 5.1). Similarly, we also have $\triangle AMB \cong \triangle CMD$.
- (2), (3). Follow from (1) and definition of congruent triangles.
 - (4) By Protractor axiom, $m \angle ABC = m \angle ABM + m \angle MBC$, and $m \angle ADC = m \angle ADM + m \angle MDC$. Using congruences above, $m \angle ABM = m \angle MDC$, $m \angle MBC = m \angle MDA$. Adding these two equalities, we get $m \angle ABC = m \angle ADC$.
- **5.5** Suppose D is on \overrightarrow{BC} . By Crossbar Theorem (Theorem 4.1), D must be on the segment BC, so D is between B, C, Now $\triangle A'B'C' \cong \triangle ABD$ by SAS. $(|AB| = |A'B'|, |AD| = |A'C'|, and <math>m \angle A' = m \angle BAD$). Thus we have |BC| = |B'C'| = |BD|. On the other hand, by Theorem 3.6, since D is between B, C we have |BC| = |BD| + |DC|. Thus, |DC| = 0, so D = C. But this contradicts to D being between B, C.
- **5.6** $\triangle ADC$ is isosceles because |AD| = |A'C'| = |AC|. Thus, by Theorem 5.2 $m \angle ADC = m \angle ACD$. Denote $\alpha = m \angle ADC = m \angle ACD$.
 - Similarly, |BD| = |B'C'| = |BC|, so $\triangle BDC$ is isosceles. Thus, by Theorem 5.2 $m \angle BDC = m \angle BCD$. Denote $\beta = m \angle BDC = m \angle BCD$.
 - Now, since AD crosses BC, $D\dot{A}$ is inside the angle $\angle BDC$. Using Theorem 4.2, we have $m \angle ADC < m \angle BDC$, i.e., $\alpha < \beta$.
 - Since AD crosses BC, \overrightarrow{CB} is inside the angle $\angle ACD$. Using Theorem 4.2, we have $m \angle BCD < m \angle ACD$, i.e. $\beta < \alpha$.

Thus we have $\alpha < \beta$ and $\beta < \alpha$, which is a contradiction.