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Section 3.4: Problem 5
(5) (a) True, all numbers have a unique square.

(b) False, for the same reason as before.
(c) False, for the same reason as before.
(d) False, for the same reason as before.
(e) False, x2 + y2 has both a positive and a negative square root.
(f) True, x = −1 is the only possible choice for x.

Section 4.3: 5, 14, 17*
(5) (a) n is divisible by k:

∃l (lk = n)
For future use, we denote this statement by k|n

(b) (1) k|n Premise
(2) ∃l (lk = n) Definition of symbol |
(3) ck = n Existential Specification of (2)
(4) ckn = n2 from (3)
(5) (cn)k = n2 from (4)
(6) ∃l (lk = n2) Existential Generalization of (5)
(7) k|n2 (6), Definition of |

(c) (1) k|n− 1 Premise
(2) ∃l (lk = n− 1) Definition of |
(3) ck = n− 1 Existential Specification of (2)
(4) n2 − 1 = (n + 1)(n− 1) Explicit calculation
(5) (n + 1)ck = n2 − 1 (3), (4)
(6) ∃l (lk = n2 − 1) Existential Generalization of (5)
(7) k|n2 − 1 Definition of |

(d) Certainly 62 = 36 is a multiple of 36, but 6 is not a multiple of 36. This is a coun-
terexample to k|n2 → k|n, with n = 6 and k = 36.

(14) Consider the domain of the integers. Define P (x) to be true iff x is odd, and define Q(x)
to be true iff x is even. We apply this example to the converse of theorem 4.6 (b) and (d)
as below:
(b) The converse to theorem 4.6 (b) is ∀x [P (x)∨Q(x)] → (∀x P (x))∨ (∀x Q(x)). In this

case, ∀x [P (x) ∨ Q(x)] is the statement that “all integers are even or odd”, which is
true. The statement that (∀x P (x)) ∨ (∀x Q(x)) states “all integers are even or all
integers are odd”, which is clearly false. Thus we have found a counterexample to the
converse of theorem 4.6 (b).

(d) The converse to theorem 4.6 (d) is
(
∃x P (x)∧ ∃x Q(x)

)
→ ∃x [P (x)∧Q(x)]. In this

case, ∃x P (x)∧∃x Q(x) is the statement that “there is an even integer and there is an
odd integer”, which is true. The statement that ∃x[P (x) ∧Q(x)] states “there exists



an integer which is both even and odd”, which is clearly false. Thus we have found a
counterexample to the converse of theorem 4.6 (d).

(17) In this proof, the mistake is to apply EG to the entire statement ∀y(y + (3 − y) = 3) to
yield ∃x ∀y (y + x = 3). The problem here is that x is dependent on y, namely x = 3− y.
More formally, plugging in 3−y for x in P (x) = ∀y (y +x = 3) is not allowed since it leads
to a conflict of variables — see Note 3 in the handout. In fact, the resulting statement is
false.

Section 4.4: 10, 27, 30
(10) We wish to show: ∼∃x (0 · x = 1). We prove this by contradiction. Suppose there is an

x for which 0 · x = 1. But we also know that for any x, 0 · x = 0 (this is Theorem A-5 in
Appendix 2). By transitivity of equality, we get 0 = 1, which contradicts one of the axioms
of real numbers (Axiom V-12 on page 375).

This proof is not quite formal but can be turned into a formal proof with little effort.
(27) (a) Assume x < y. By Axiom V-16 on page 375, this implies x+z < y+z for any z. Take

z = −x− y (this implicitly uses US rule). Then we get x + (−x− y) < y + (−x− y).
Using commutativity and associativity of addition we get (x − x) − y < (y − y) − x.
By definition, x−x = 0, y− y = 0, so we get −y < −x, which is the same as −x > −y
(this is the definition of >).
Now assume −x > −y. Add to both sides z = x + y (this is a short way of saying: By
Axiom V-16 on page 375, this implies −x + z > −y + z for any z. Take z = x + y).
We get −x + (x + y) > −y + (x + y). Using commutativity, associativity of addition
and −x + x = 0,−y + y = 0, we get y > x, which is the same as x > y.
Thus, we have shown that (x < y) → (−x > −y) and (−x > −y) → x < y, so
(x < y) ↔ (−x > −y) (by the biconditional rule).

(b) By applying UG rule to part (a), we get ∀x, y (x < y) ↔ (−x > −y). In particular, it
should hold for x = 0 (by US rule), so we get ∀y (0 < y) ↔ (−y > −0). Since −0 = 0,
we get ∀y (0 < y) ↔ (−y > 0).

(30) Assume 0 < x < y. By Axiom V-17 on page 375, we can multiply both sides of inequality
x < y by any positive number z. Take z = x (since we know that x is positive); then we
get x2 < xy. Similarly, by transitivity of < (Axiom V-14), we know that 0 < y, so we can
multiply x < y by y to get xy < y2. Thus, we have x2 < xy and xy < y2. By transitivity
of <, this implies x2 < y2.


