MAT 200 SOLUTIONS TO HOMEWORK 4

OCTOBER 5, 2004

Section 3.4: Problem 5

- (5) (a) True, all numbers have a unique square.
 - (b) False, for the same reason as before.
 - (c) False, for the same reason as before.
 - (d) False, for the same reason as before.
 - (e) False, $x^2 + y^2$ has both a positive and a negative square root.

(f) True, x = -1 is the only possible choice for x.

Section 4.3: 5, 14, 17*

(5) (a) n is divisible by k:

$$\exists l \ (lk=n)$$

For future use, we denote this statement by k|n

(b)	(1)	k n	Premise	
	(2)	$\exists l \ (lk=n)$	Definition	of symbol
	(3)	ck = n	Existential	Specification of (2)
	(4)	$ckn = n^2$	from (3)	_
	(5)	$(cn)k = n^2$	from (4)	
	(6)	$\exists l \ (lk = n^2)$	Existential	Generalization of (5)
	(7)	$k n^2$	(6), Definit	tion of
(c)	(1)	k n-1		Premise
	(2)	$\exists l \ (lk = n - 1)$	1)	Definition of
	(3)	ck = n - 1		Existential Specification of (2)
	(4)	$n^2 - 1 = (n + 1)^2 + 1$	(-1)(n-1)	Explicit calculation
	(5)	(n+1)ck = r	$n^2 - 1$	(3), (4)
	(6)	$\exists l \ (lk = n^2 - m^2)$	1)	Existential Generalization of (5)
	(7)	$k n^2 - 1$,	Definition of

- (d) Certainly $6^2 = 36$ is a multiple of 36, but 6 is not a multiple of 36. This is a counterexample to $k|n^2 \rightarrow k|n$, with n = 6 and k = 36.
- (14) Consider the domain of the integers. Define P(x) to be true iff x is odd, and define Q(x) to be true iff x is even. We apply this example to the converse of theorem 4.6 (b) and (d) as below:
 - (b) The converse to theorem 4.6 (b) is $\forall x \ [P(x) \lor Q(x)] \to (\forall x \ P(x)) \lor (\forall x \ Q(x))$. In this case, $\forall x \ [P(x) \lor Q(x)]$ is the statement that "all integers are even or odd", which is true. The statement that $(\forall x \ P(x)) \lor (\forall x \ Q(x))$ states "all integers are even or all integers are odd", which is clearly false. Thus we have found a counterexample to the converse of theorem 4.6 (b).
 - (d) The converse to theorem 4.6 (d) is $(\exists x \ P(x) \land \exists x \ Q(x)) \to \exists x \ [P(x) \land Q(x)]$. In this case, $\exists x \ P(x) \land \exists x \ Q(x)$ is the statement that "there is an even integer and there is an odd integer", which is true. The statement that $\exists x [P(x) \land Q(x)]$ states "there exists

an integer which is both even and odd", which is clearly false. Thus we have found a counterexample to the converse of theorem 4.6 (d).

(17) In this proof, the mistake is to apply EG to the entire statement $\forall y(y + (3 - y) = 3)$ to yield $\exists x \forall y (y + x = 3)$. The problem here is that x is dependent on y, namely x = 3 - y. More formally, plugging in 3 - y for x in $P(x) = \forall y (y + x = 3)$ is not allowed since it leads to a conflict of variables — see Note 3 in the handout. In fact, the resulting statement is false.

Section 4.4: 10, 27, 30

- (10) We wish to show: $\sim \exists x \ (0 \cdot x = 1)$. We prove this by contradiction. Suppose there is an x for which $0 \cdot x = 1$. But we also know that for any $x, 0 \cdot x = 0$ (this is Theorem A-5 in Appendix 2). By transitivity of equality, we get 0 = 1, which contradicts one of the axioms of real numbers (Axiom V-12 on page 375).
- This proof is not quite formal but can be turned into a formal proof with little effort.
- (27) (a) Assume x < y. By Axiom V-16 on page 375, this implies x + z < y + z for any z. Take z = -x y (this implicitly uses US rule). Then we get x + (-x y) < y + (-x y). Using commutativity and associativity of addition we get (x x) y < (y y) x. By definition, x x = 0, y y = 0, so we get -y < -x, which is the same as -x > -y (this is the definition of >). Now assume -x > -y. Add to both sides z = x + y (this is a short way of saying: By Axiom V-16 on page 375, this implies -x + z > -y + z for any z. Take z = x + y). We get -x + (x + y) > -y + (x + y). Using commutativity, associativity of addition and -x + x = 0, -y + y = 0, we get y > x, which is the same as x > y. Thus, we have shown that $(x < y) \rightarrow (-x > -y)$ and $(-x > -y) \rightarrow x < y$, so $(x < y) \leftrightarrow (-x > -y)$ (by the biconditional rule).
 - (b) By applying UG rule to part (a), we get $\forall x, y \ (x < y) \leftrightarrow (-x > -y)$. In particular, it should hold for x = 0 (by US rule), so we get $\forall y \ (0 < y) \leftrightarrow (-y > -0)$. Since -0 = 0, we get $\forall y \ (0 < y) \leftrightarrow (-y > 0)$.
- (30) Assume 0 < x < y. By Axiom V-17 on page 375, we can multiply both sides of inequality x < y by any positive number z. Take z = x (since we know that x is positive); then we get $x^2 < xy$. Similarly, by transitivity of < (Axiom V-14), we know that 0 < y, so we can multiply x < y by y to get $xy < y^2$. Thus, we have $x^2 < xy$ and $xy < y^2$. By transitivity of <, this implies $x^2 < y^2$.