MAT125 Fall 2007 Review for Midterm II

2.5 Understand how $\lim_{x\to a} f(x) = \infty$, etc., give a vertical asymptote at a (Box 2 p.129, Example 1 p.130). Exercises 3, 7. Understand how $\lim_{x\to\infty} f(x) = L$, etc., give as horizontal asymptote the line y = L (Box 5 p.132, Examples 3,4 p.133). Exercises 3, 7.

Be able to calculate $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ for the special case where $f(x) = p_1(x)/p_2(x)$ is the quotient of two polynomials, p_1, p_2 . Use the "divide by the highest power of x in the denominator" method (explained on p.134). Example 5 p.135, Example 10 p.137. Exercises 21-23.

2.6 Understand that the slope of the tangent line is the limit of the slopes of secant lines (Figure 1, Box 1, p.140). Be comfortable with both notations: $x \to a$ and $h \to 0$, where h = x - a. (Compare Box 1 and Box 2, p.141). Example 1 p.140, Example 2 p.142. Exercises 7,8. Understand also that instantaneous velocity at t = a is the limit of average velocities over smaller and smaller time periods beginning or ending with a. Box 3 p.142. Example 3. Exercises 17, 18ab.

2.7 Basic concept: the derivative of f at a (Box 2 p.148). Understand that the derivative of f at a is the slope of the line tangent to the graph of f at the point (a, f(a)) (Box, Example 2, p.149). Exercises 4, 7. Also understand that the derivative of f at a is the instantaneous rate of change of f at a; if f(t) is position as a function of time t, then f'(t) is instantaneous velocity at time t. Example 4. Exercises 25, 26.

2.8 Be able to sketch the graph of f' given the graph of f. Example 1 p.156. Be able to calculate f'(x) from the definition in simple cases (Examples 3, 4, 5 pp.158-159), Exercises 19-22. Understand why f(x) = |x| does not have a derivative at x = 0 (Example 6 p.160). Understand how to calculate the second derivative f''(x) (Example 7 p.163) and its interpretation in terms of acceleration (Example 8 p.164; Exercise 38).

2.9 Be able to tell by examining f' where f is increasing and where it is decreasing (Box, p.169; Example 1, Exercises 1,2). Be able to tell from f'' where the graph is concave upward and where it is concave downward (Box, p.170; Example 2, Exercise 8).

3.1 Know the elementary differentiation rules: $\frac{d}{dx}(c) = 0$ and $\frac{d}{dx}(x) = 1$ (Boxes, p.183) and understand what these equations mean in terms of

slopes. Know the *Power Rule*: $\frac{d}{dx}(x^n) = nx^{n-1}$ (Boxes, p.184 and p.185). Be familiar with the special cases $n = \frac{1}{2}$ $(f(x) = \sqrt{x})$ and n = -1 $(f(x) = \frac{1}{x})$. Examples 2, 3. Be able to calculate the derivative of rf(x) + sg(x) for constants r, s knowing the derivatives of f and g separately. (Boxes, pp.186-187 Examples 4, 5).

Know how to differentiate the "natural exponential function" $f(x) = e^x$ (Box, p.190; Example 8, Exercises 10, 29).

3.2 Be able to apply the product and quotient rules correctly (Box, p.194; Examples 1a, 2, 3; Exercise 13). (Box, p.197; Examples 5, 6; Exercises 11, 19). If you can't remember where the minus sign goes in the quotient rule, use $\frac{d}{dx}\frac{1}{x} = \frac{-1}{x^2}$ to check.

3.4 Be able to sketch the graphs of $\sin x$ and $\cos x$ to scale ($\pi = 3.14..$) and to convince yourself that $\sin' = \cos$ and that $\cos' = -\sin$. (Boxes 4, 5 pp.215-216; Example 1 p.216; Exercises 3, 4, 6, 7). Remember or be able to calculate that $\tan' = \sec^2$. [This is a good place to review your trigonometric identities, especially $\sin^2 + \cos^2 = 1$ and $\tan^2 + 1 = \sec^2$.] Example 2.

3.5 Know and be comfortable with the Chain Rule in both forms (Box, p.220). Example 1, p.221: read the Note at the end. Practice as many examples as you can. Special case with the "outside function" a power: Box 4 on p.223; Examples 3, 4, 5. Be able to apply the Chain Rule to $f(x) = a^x = e^{x \ln a}$ to obtain $f'(x) = a^x \ln a$ (Box 5, p.224; Exercise 20).

3.6 Implicit differentiation always involves the chain rule. In a case like Example 1 p.233, where we are differentiating with respect to x, the derivative of x^2 is 2x but the derivative of y^2 is $2y\frac{dy}{dx}$. The pattern is always the same: take $\frac{d}{dx}$ of everything, then solve for $\frac{dy}{dx}$ (Example 2; Exercises 3, 4, 5). Be able to use implicit differentiation to calculate the derivatives of the

Be able to use implicit differentiation to calculate the derivatives of the inverse trigonometric \sin^{-1} and \tan^{-1} (Boxes, p.237). [Need those trig identities.] Exercises 29,30.

3.7 Understand why $\frac{d}{dx} \ln x = \frac{1}{x}$, and be able to use this fact with the Chain Rule as in Examples 1, 2, 3 on p.341 (Exercises 2, 3, 6). Know how and when to apply *logarithmic differentiation* (Box, p.243; Example 8; Exercises 27-30).

Use the Chapter Reviews for further reviewing.

November 5, 2007