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Use the first two review sheets and the following.

3.4 Know and be comfortable with the Chain Rule in both forms (Box, p.198). Example 1,
p.199: read the Note at the end. Practice as many examples as you can. Special case with
the “outside function” a power: Box 4 on p.200; Examples 3, 4, 5. Be able to apply the
Chain Rule to f(x) = ax = ex ln a to obtain f ′(x) = ax ln a (Box 5, p.202; Exercises 15, 31).

3.5 Implicit differentiation always involves the chain rule. In a case like Example 1 p.210,
where we are differentiating with respect to x, the derivative of x2 is 2x but the derivative of
y2 is 2y dy

dx
. The pattern is always the same: take d

dx
of everything, then solve for dy

dx
(Example

2; Exercises 3, 4, 5).

3.6 Review the definitions of the inverse trigonometric functions: sin−1 on p.216, cos−1 on
p.218, tan−1 on p.219. Be able to use implicit differentiation to calculate the derivatives of the
inverse trigonometric functions, especially sin−1 (Box 1 p.217) and tan−1 (Box 4 p.219). Be
able to apply right-triangle trigonometry to evaluate expressions like cos(tan−1(x)) (Example
3). [Need those trig identities.] Exercises 18, 19.

3.7 Understand why d
dx

ln x = 1

x
, and be able to use this fact with the Chain Rule as in

Examples 1, 2, 3 on p.222 (Exercises 2, 3, 6). Know how and when to apply logarithmic

differentiation (Box, p.224; Example 8; Exercises 33-36).

3.9 Linear approximation. Be able to use the value f(a) and the derivative f ′(a) to estimate

f(x) for x near a. Equation 1 p. 241, Example 1, Exercises 15, 17. Understand that if the
graph of f is concave up at a, then linear approximation will underestimate nearby f(x); and
overestimate if the graph is concave down (Example 2). Be able to use linear approximation
(differentials) to estimate how errors in measurement propagate in calculations: Example 4,
Exercises 27, 28, 29.

4.1 Related rates. Work through Examples 1, 2, 3, 4, 5 understanding how they reflect the
“Strategy” explained on p.258. Note that the solution will always involve the Chain Rule.
Exercises 4, 9, 17 and as many others as you can fit in.

4.2 Understand the definitions (Box 1, p.262) of “f has an absolute maximum at c” and
“f(c) is the maximum value of f” (and for “minimum” also). [In particular understand the
distinction in mathematical usage between a maximum and a maximum value: f(x) = 1−x2

has its maximum at x = 0. Its maximum value is f(0) = 1.] Understand the definition (Box
2, p.263) of “f has a local maximum at c,” etc. and study Example 4 carefully. Understand
what “Fermat’s Theorem” says (Box 4, p.265) and the situations of Figure 11 (you can have
f ′(c) = 0 without c being a local max or min) and Figure 12 (f might not have a derivative
at the point c where f(c) is minimum or maximum). Be able to implement the “Closed
Interval Method” (Box, p.266): Example 6b, Exercises 5, 41, 42, 52.

4.3 Understand that if f ′(x) > 0 on an interval, then f is “sloping up” and therefore
increasing on that interval; and that if f ′(x) < 0 on an interval, then f is “sloping down”
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and therefore decreasing on that interval (Box, p.273), Example 2, Exercises 7a, 8a, 9a.
Understand the relation between f ′′ and the concavity of the graph of f (Box, p.275):
remember Paul Kumpel’s mnemonograms:

+ +
⌣

− −

⌢

Understand what an inflection point is (just below Figure 5 on p.275). Exercises 7c, 8c,
9c. The Second Derivative Test (Box, p.275) will be useful when you get to optimization
problems, in section 4.6. Be able to put slope and concavity information together with
information about asymptotes (from section 2.5) to sketch graphs of complicated functions.
Example 6, Exercises 33, 38.

4.5 Understand when you can apply L’Hôpital’s rule: BOTH numerator and denominator
must have limit 0, or BOTH numerator and denominator must have ∞ limit (can be plus or
minus ∞). Box, p.291, Example 1. Be prepared to apply the rule more than once, Example
2. Exercises 5, 9, 17. Be able to rewrite an indeterminate product (p.294, i.e. where one
factor goes to 0 and the other goes to ∞ or to −∞) as a quotient suitable for L’Hôpital’s
rule. Example 6, Exercises 29, 30. And indeterminate differences Example 7, Exercises 33,
35. And indeterminate powers: Examples 8 and 9, Exercises 39, 40.

4.6 Optimization problems are difficult because (as in related rates problems) you have to
set up the notation and the mathematical context. Understand and practice applying the
“Six-step process” from p.299-300. Steps 4 and 5 are crucial: this is where you make the
word problem into a “find the maximum” (or minimum) problem. Work through Examples
1, 2, 3, 4, 5 with the six steps in mind, so you learn how to apply them yourself. Exercises
15, 19, 22 and as many others as you can manage. Do odd-numbered ones so you can check
your answers in the back of the book.

4.8 Understand that F is an antiderivative of f if F ′(x) = f(x). And that there is no single
antiderivative, since if G(x) = F (x) + C (where C is a constant), then G′ = F ′. In fact for
a function f defined on an interval, any two antiderivatives must differ by a constant; so
for a function f defined on an interval (Box, p.317) “the most general antiderivative” of f
is F (x) + C, where F is any particular antiderivative of f . Example 1. Know the Table of
Antidifferentiation Formulas on p.318: it gives particular antiderivatives for some elementary
functions; for the sum of two functions and for a constant times a function. These are familiar
differentiation formulas written backwards. Apply the table in Example 2, Exercises 10-15.
Be able to solve elementary differential equations (p.319) including those where you are asked
to find the single antiderivative satisfying some given condition. Example 3, Exercises 23,
25, 27. Be able to take two consecutive antiderivatives, as in Example 4, Exercises 19, 20,
31, 33.
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