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Modular Arithmetic

UPC code again.

When working with the UPC check-digit system, we learned that if any
one of the twelve digits in a UPC number is lost, it can be reconstructed
from the rest. For example suppose the fifth digit of the code on my box of
chalk was illegible, so it reads 0720x7311450. The check digit is calculated
so that the sum of all the digits, multiplied alternately by 3 and by 1, is a
multiple of 10 (“congruent to 0 mod 10”). That sum turns out to be

3 · 0 + 1 · 7 + 3 · 2 + 1 · 0 + 3 · x+ 1 · 7 + 3 · 3 + 1 · 1 + 3 · 1 + 1 · 4 + 3 · 5 + 1 · 0

giving
52 + 3 · x ≡ 0 mod 10.

Since an equivalence mod 10 still holds if we add or subtract 10 from either
side, we can break 52 as 50 + 2 and discard the 50; this leaves

2 + 3 · x ≡ 0 mod 10,

so what is x? Adding 10 to the right gives 2 + 3 · x ≡ 10 mod 10, and
subtracting 2 from both sides gives 3 · x ≡ 8 mod 10. Then the “threes”
multiplication table mod 10 shows that x must be equivalent to 6 mod 10.
Since x is a positive single digit, it must be exactly 6.

The UPC code can retrieve a lost digit in the fifth place because we can
solve the equation a+3·x ≡ 0 mod 10 or, equivalently, 3·x ≡ 10−a mod 10
no matter what a is. This is only possible because 3 and 10 have no common
factors. As we have checked in class, one cannot solve 2 ·x ≡ 1 mod 10, and
2 · x ≡ 4 mod 10 has two distinct solutions, so would not help in retrieving
lost digits.

When the modulus is a prime number.

Suppose that instead of 10 we were solving equations mod 11. Since 11
is a prime, the only way for a number to have a factor in common with 11 is
to be a multiple of 11, i.e. to be ≡ 0 mod 11. So for any number k which is
not a multiple of 11, we can always solve an equation like k · x ≡ a mod 11.
The ks that work are thus 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and any number equivalent
to them mod 11 .
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• For typographical economy let’s use 1 for the equivalence class of 1 mod 11,
etc. So 1 represents the set of all integers congruent to 1 mod 11, i.e.
{. . .− 21,−10, 1, 12, 32, . . .}.

One way to see how to solve congruence equations is to start with the
multiplication table mod 11, using our new notation. Here is how the equiv-
alence classes multiply. To multiply 10 · 9 we take any representative of 10
and any representative of 9, multiply them as integers, and take the remain-
der after the product is divided by 11. The obvious choices are 10 and 9;
then since 90 = 8 · 11 + 2 our rule gives 10 · 9 = 2. But note that we could
have taken 32 = 2 · 11 + 10 as a representative for 10 and 64 = 5 · 11 + 9 as
a representative for 9. The product 32 · 64 = 2048 is equal to 196 · 11 + 2,
i.e. the equivalence class mod 11 of 2048 is 2, the same answer we got for
10 and 9.

• Why does this work? Any representative for 10 is 10 plus a multiple of
11, so it has theform k ·11+10 for some whole number k (which can be
positive, zero or negative). Similarly any representative for 9 is 9 plus
a multiple of 11, so it has theform ℓ · 11 + 9 for some whole number ℓ.
Multiplying the representatives together gives (k · 11 + 10) · (ℓ · 11 + 9)
which is k · 11 · ℓ · 11 + k · 11 · 9 + 10 · ℓ · 11 + 10 · 9. Grouping together
all the multiples of 11 gives (k · 11 · ℓ+ k · 9 + 10 · ℓ) · 11 + 90 and since
90 = 8 · 11+2 our product becomes (k · 11 · ℓ+ k · 9+10 · ℓ+8) · 11+2,
with equivalence class 2, independently of k and ℓ.

Here is our multiplication table:

· 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10
2 0 2 4 6 8 10 1 3 5 7 9
3 0 3 6 9 1 4 7 10 2 5 8
4 0 4 8 1 5 9 2 6 10 3 7
5 0 5 10 4 9 3 8 2 7 1 6
6 0 6 1 7 2 8 3 9 4 10 5
7 0 7 3 10 6 2 9 5 1 8 4
8 0 8 5 2 10 7 4 1 9 6 3
9 0 9 7 5 3 1 10 8 6 4 2
10 0 10 9 8 7 6 5 4 3 2 1
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Notice that in each row all the products are different. This happens for the
following reason. Suppose that 7 · 7 = 7 · 3. Subtracting 7 · 3 from both sides
gives 7 · 7 − 7 · 3 = 0 or 7 · 4 = 0. But this would mean that 7 · 4 was 11 or
a multiple of 11, so 11 would divide 7 · 4 which is impossible. (Based on the
principle: if a prime divides the product of two numbers, it must divide one
of the factors). This paragraph explains why 7 · 7 = 7 · 3 is impossible; the
same argument works to show that 7 · a = 7 · b for a 6= b between 0 and 10.

Since there are 10 elements in each row, and all are different, the row must
contain the elements 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 in some order. This gives an
elementary way to solve an equation like 5 · x ≡ 2 mod 11, or 5 · x = 2: we
look along the 5 row until we find 2; it is in the column corresponding to 7,
so the solution is x = 7, or x ≡ 7 mod 11.
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