
MAT 126: PROBLEM SET 1 SOLUTIONS

1. Let a,b, c be positive real numbers greater than 1. Show that

loga(bc) logb(ac) logc(ab) = loga(bc) + logb(ac) + logc(ab) + 2.

Solution: By logarithm identities we have:

loga(bc) =
log(bc)

log(a)
=

log(b) + log(c)

log(a)

Let A = loga, B = log b, and C = log c. Then we have:

loga(bc) logb(ac) logc(ab)

=

(
B+ C

A

)(
A+ C

B

)(
A+ B

C

)
=

1

ABC

(
AB+ BC+AC+ C2

)
(A+ B)

=
1

ABC

(
A2B+ABC+A2C+AC2 +AB2 + B2C+ABC+ BC2

)
=
A

C
+ 1+

A

B
+
C

B
+
B

C
+
B

A
+ 1+

C

A

=

(
B+ C

A

)
+

(
A+ C

B

)
+

(
A+ B

C

)
+ 2

= loga(bc) + logb(ac) + logc(ab) + 2.

2. (a) Show that if a and h are positive numbers with h < a2, then√
a2 + h− a <

h

2a
< a−

√
a2 − h.

Solution: By multiplying by the conjugate, we obtain:√
a2 + h− a =

(√
a2 + h− a

) √a2 + h+ a√
a2 + h+ a

=
a2 + h− a2√
a2 + h+ a

=
h√

a2 + h+ a
.

Now, notice that, because we have h > 0, and since the function f(x) =
√
x

is increasing, we have a2 + h > a2 and thus
√
a2 + h >

√
a2 = a. Thus,√

a2 + h+a > 2a. Since a dividing by a smaller number yields a bigger number,
we have: √

a2 + h− a =
h√

a2 + h+ a
<
h

2a
.



The other inequality is established similarly. We have:

a−
√
a2 − h =

(
a−

√
a2 − h

) a+
√
a2 − h

a+
√
a2 − h

=
a2 − (a2 − h)

a+
√
a2 − h

=
h

a+
√
a2 − h

.

As before, we have a2 − h < a2, so a +
√
a2 − h <

√
a2 + a = 2a. We thus

have:

h

2a
<

h

a+
√
a2 − h

= a−
√
a2 − h.

2. (b) Factor x3 − y3 and use this to show that if a and h are positive numbers
with h < a3, then

3
√
a3 + h− a <

h

3a2
< a−

3
√
a3 − h.

Solution: We first begin by observing that x3−y3 = (x−y)(x2+xy+y2). This
suggests that x2+xy+y2 acts as a degree two analogue of the conjugate x−y.
In particular, multiplying the top and bottom of x− y by x2 + xy+ y2 achieves
the effect of cubing both summands.

With this insight, we manipulate the leftmost term in the inequality:

3
√
a3 + h− a =

(
3
√
a3 + h− a

) ( 3
√
a3 + h

)2
+ a 3
√
a3 + h+ a2(

3
√
a3 + h

)2
+ a 3
√
a3 + h+ a2

=
a3 + h− a3(

3
√
a3 + h

)2
+ a 3
√
a3 + h+ a2

=
h(

3
√
a3 + h

)2
+ a 3
√
a3 + h+ a2

Subsequent to this, we once again have that h > 0 and that the cube root
function is increasing, and so 3

√
a3 + h >

3
√
a3 = a. From elementary properties

of inequalities, we conclude that
(

3
√
a3 + h

)2
+ a 3
√
a3 + h+ a2 > 3a2. We thus

have

3
√
a3 + h− a =

h(
3
√
a3 + h

)2
+ a 3
√
a3 + h+ a2

<
h

3a2
.



For the other inequality we proceed similarly:

a−
3
√
a3 − h =

(
a−

3
√
a3 − h

) a2 + a 3
√
a3 − h+

(
3
√
a3 − h

)2
a2 + a 3

√
a3 − h+

(
3
√
a3 − h

)2
=

a3 − (a3 − h)

a2 + a 3
√
a3 − h+

(
3
√
a3 − h

)2
=

h

a2 + a 3
√
a3 − h+

(
3
√
a3 − h

)2 .
We once gain have that a3 − h < a3 and thus 3

√
a3 − h <

3
√
a3 = a. This yields

a2 + a 3
√
a3 − h+

(
3
√
a3 − h

)2
< 3a2. We thus have:

h

3a2
<

h

a2 + a 3
√
a3 − h+

(
3
√
a3 − h

)2 = a−
3
√
a3 − h.

2. (c) Write
∣∣∣∣83−√6891∣∣− ∣∣9− 3

√
726
∣∣∣∣ without using absolute value signs.

Solution: Notice that 6891 = 832 + 2 and 726 = 93 − 3. The innermost ab-
solute value signs are thus trivial to remove, since 83 −

√
832 + 2 < 0 and

9− 3
√
93 − 3 > 0. We thus have:∣∣∣∣∣∣83−√6891∣∣∣− ∣∣∣9− 3

√
726
∣∣∣∣∣∣ = ∣∣∣(√832 + 2− 83

)
−
(
9−

3
√
93 − 3

)∣∣∣ .
By the inequalities from the previous parts, we have:√

832 + 2− 83 <
2

2 · 83
=

1

83
<

1

81
=

3

3 · 92
< 9−

3
√

93 − 3.

We are thus currently subtracting a bigger number from a smaller one, and so
the expression in the absolute value bars is negative. Hence we conclude:∣∣∣∣∣∣83−√6891∣∣∣− ∣∣∣9− 3

√
726
∣∣∣∣∣∣ = (9− 3

√
726
)
−
(√

6891− 83
)
.

At this point we are done, but if you’re feeling particularly keen on doing arith-
metic, then you can write this as 92− 3

√
726−

√
6891.

3. Let r ∈ R and consider the sequence xn = rn. How does this sequence behave
for different values of r? For which r does limn rn exist?

Solution: If |r| < 1, then each subsequent term of the sequence rn multiplies
each previous term by a number less than 1 in absolute value. These terms are
thus getting smaller. This alone does not “prove” that the sequence converges



to 0, but the Greeks knew that if you kept multiplying by numbers uniformly
bounded away from 1, then you would eventually have something arbitrarily
small – this is the Exhaustion Lemma of Eudoxus.

In this question, you were not asked to establish anything formally, but
I can present several quick semi-formal arguments for this fact:

a) If we accept the formula for the sum of the infinite sum of the geometric
series

∑∞
k=0 r

k = 1
1−r , then we see in the case that 0 6 r < 1 that we have a

sum of infinitely many non-negative terms that converges to a finite number. If
these terms were not eventually arbitrarily small, then this could not happen.
The terms in the case of −1 < r < 0 differs only by a sign, and so we can
conclude that they are small from the positive case.

b) Again, in the case 0 6 r < 1, we have that rn is a bounded monotonically
decreasing sequence. A theorem about sequences then tells us that it must
converge to some value L. If L 6= 0, then we can we have that the sequence
is eventually at most L 1−r

1+r away from L. However, if |L − rn| < L 1−r
1+r , then

rn < L+L 1−r
1+r = L

2
1+r and thus rn+1 < L 2r

1+r . Now rn+1−L < L 2r
1+r−L = L 1−r

1+r .
But this says that |L − rn+1| 6< L 1−r

1+r , so this inequality cannot hold eventually.
This is a contradiction, so we conclude L = 0. The case for −1 < r < 0 follows
since the terms only differ by a sign.

Now, for r = −1, we see that the sequence alternates between −1 and 1
and thus does not converge to any specific value. Meanwhile, for r = 1, the
sequence is always 1 and thus converges to 1. Finally, if |r| > 1, then |rn| grows
like an exponential function. When r > 1, the sequence diverges to∞ (which is
not a number, so the sequence is not convergent). When r < −1, the sequence
blows up, but does so with alternating signs (which means that we can’t even
say limn r

n = −∞, so it fails to converge in an even worse sense).

4. Show that limn n
√
2n + 5n exists and find its value.

Solution: This follows by heavy use of limit laws:

lim
n

n
√
2n + 5n = lim

n
5 n

√(
2

5

)n
+ 1 = 5 n

√
lim
n

((
2

5

)n
+ 1

)

= 5 n

√
lim
n

(
2

5

)n
+ lim

n
1 = 5 n

√
0+ 1 = 5.

Bringing the limit inside the radical is allowed since it was said in class that
you may assume continuity of the function f(x) = n

√
x. Further, by the previous

problem, we know that limn
(
2
5

)n
= 0.



5. Show that f(x) = x2 is continuous at every a ∈ R.

Solution: Let a ∈ R. We will show that limx→a f(x) = f(a). Towards this end,
consider:

|x2 − a2| = |x+ a| · |x− a|.

If |x− a| < 1, then |x+ a| < 2|a|+ 1, and so |x2 − a2| < (2|a|+ 1) · |x− a|.
Now, let A ∈ O(a2). We then have that there is some a2 ∈ (x,y) ⊆ A. Let

ε = min{a2 − x,y − a2}. Then a2 ∈ (a2 − ε,a2 + ε) ⊆ (x,y) ⊆ A. Now, let

δ = min
{

ε
2|a|+1 , 1

}
, and B = (a− δ,a+ δ). If x ∈ B, then |x− a| < a, and so

|x2 − a2| < (2|a|+ 1) · |x− a| < (2|a|+ 1)
ε

2|a|+ 1
= ε.

Hence x2 ∈ (a2 − ε,a2 + ε), and so f(x) ∈ A. Thus f[B] ⊆ A. Hence
limx→a f(x) = f(a), and so f is continuous.

6. Using Riemann sums, show that the function f(x) = x3 is integrable on the
interval [0, 1] and compute

∫1
0 f(x)dx.

Solution: Since f is increasing on the interval [0, 1], we have, for any X =
[x,y] ⊆ [0, 1], that infX f = f(x) and supX f = f(y). Now, let Pn be the n-th
uniform partition, such that Pn ≡

(
0 < 1

n
< . . . < n−1

n
< n
n

)
. We then have:

U(f,Pn) =

n∑
k=1

(
k

n
−
k− 1

n

)
sup

[k−1
n

, k
n ]
f

=

n∑
k=1

1

n

(
k

n

)3

=
1

n4

(
n∑
k=1

k3

)

=
1

n4

n2(n+ 1)2

4

=

(
1+ 1

n

)2
4



Using the sum of cubes formula given in the notes. We similarly have:

L(f,Pn) =

n∑
k=1

(
k

n
−
k− 1

n

)
inf

[k−1
n

, k
n ]
f

=

n∑
k=1

1

n

(
k− 1

n

)3

=
1

n4

(
n−1∑
k=1

k3

)

=
1

n4

(n− 1)2 n2

4

=

(
1− 1

n

)2
4

Using limit laws and the fact that limn 1
n
= 0, we have

lim
n
U(f,Pn) = lim

n
L(f,Pn) =

1

4
.

By the definition of an integral, this tells us that
∫1
0 f(x)dx =

1
4 .

7. Using Riemann sums, show that the function

f(x) =

{
0 x < 1/2

1 x > 1/2

is integrable on the interval [0, 1] and compute
∫1
0 f(x)dx.

Solution: Consider Pn =
(
0 < 1

2 − 1
n
< 1

2 + 1
n
< 1
)

for n > 2. Notice that f is
uniformly 0 on

[
0, 1

2 − 1
n

]
and uniformly 1 on

[
1
2 + 1

n
, 1
]
. Meanwhile, on the

interval
[
1
2 − 1

n
, 1
2 + 1

n

]
, f takes on both of the values 0 and 1. We thus have:

L(f,Pn) =

((
1

2
−

1

n

)
− 0

)
· 0

+

((
1

2
+

1

n

)
−

(
1

2
−

1

n

))
· 0

+

(
1−

(
1

2
+

1

n

))
· 1

=
1

2
−

1

n
.



Similarly for upper sums:

U(f,Pn) =

((
1

2
−

1

n

)
− 0

)
· 0

+

((
1

2
+

1

n

)
−

(
1

2
−

1

n

))
· 1

+

(
1−

(
1

2
+

1

n

))
· 1

=
1

2
+

1

n
.

Using limit laws and the fact that limn 1
n
= 0, we have

lim
n
U(f,Pn) = lim

n
L(f,Pn) =

1

2
.

By the definition of an integral, this tells us that
∫1
0 f(x)dx =

1
2 .

8. Show that |3 sin θ+ 4 cos θ| 6 5. When does equality hold?

Solution: Let α = arctan
(
3
4

)
. Then sin(α) = 3

5 and cos(α) = 4
5 . [This may be

verified by checking that sin(α)
cos(α) = 3

4 and that the point
(
4
5 ,

3
5

)
lies on the unit

circle.] We then have:

3 sin θ+ 4 cos θ = 5 (sin(α) sin(θ) + cos(α) cos(θ)) .

By the angle subtraction formula for cos, this is equal to 5 cos(θ− α). Hence:

|3 sin θ+ 4 cos θ| = 5| cos(θ− α)| 6 5,

since cos ranges in values from −1 to 1.
We have equality precisely when cos(θ− α) = ±1. This occurs when θ−α =

2kπ or when θ−α = π+ 2kπ. In other words, we have equality precisely at the
points:{

arctan

(
3

4

)
+ 2kπ : k ∈ Z

}
∪
{
arctan

(
3

4

)
+ 2(k+ 1)π : k ∈ Z

}
.


