Top Grpd

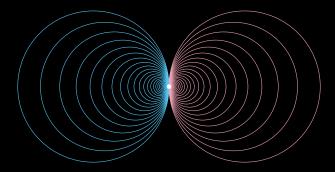
Mathematics Department Oral Exam

Minor Topic

π_1 : Top. \rightarrow Grp

the fundemental group

Top. Grp product $X \times Y$ $G \times H$ coproduct $X \vee Y$ G * H



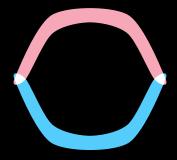
$$\pi_1(X \lor Y) \ncong \pi_1(X) * \pi_1(Y)$$

We must ask that X and Y are *well-pointed*.

The Seifert–van Kempen Theorem: Describes the fundamental group of a union of spaces. In short: π_1 : Top. \rightarrow Grp preserves *nice* colimits.

Big Caveat:

The intersections of the spaces must be path connected.



$\pi: \mathsf{Top} \to \mathsf{Grpd}$

the fundemental groupoid

If $G \subset X$, we say X is a G-space. $p: X \to X/G$ (orbit space)

In this case, πX is a *G*-groupoid. $p: \pi X \to \pi X //G$ (orbit groupoid)

Under mild assumptions, $\pi(X/G) \cong \pi X//G$.

🗆 🗆 End of intro. 🗆 🗆

Topic Outline:

Basic notions and category theory.
The statement and proof of the vKT.
Calculations: π₁(S¹) and HNN-extensions.
The construction of colimits in Grpd.

The Path Category:

Let X be a space. The path category PX has:

Objects: x : PX the points of X.

Morphisms: $a : x \to y$ the maps $a : [0, r] \to X$, such that a(0) = x, a(r) = y.

Composition: The concatenation of paths. For $a : x \rightarrow y$, $b : y \rightarrow z$, we have $a \cdot b : x \rightarrow z$.

> The zero length paths are units. Concatenation is strictly associative.

Groupoid:

A small category in which every morphism is invertible.

We think of groupoids as algebraic objects, like groups. We may perform set theoretic constructions on the object set. This is a very *strict* notion.

A morphisms of groupoids $f : G \rightarrow H$ is a functor. We then form Grpd, the category of groupoids.

The Fundamental Groupoid:

Formed as a quotient of the path category.

If $a, b : x \rightarrow y$ with |a| = |b|, then we say $a \sim b$, if a is homotopic to b rel endpoints.

In general, for $a, b : x \to y$, $a \sim b$ means: There exist constant paths r_y , s_y , such that $a \cdot r_y \sim b \cdot s_y$.

Taking path classes as morphisms, we form πX .

(There are several things to be checked.)

Homotopies of Functors:

Let $f, g : \mathcal{C} \to \mathcal{D}$ be functors.

A natural transformation $\alpha : f \Rightarrow g$ conists of: for each x : C, $\alpha_x : f(x) \rightarrow g(x)$, such that for any a : C(x, y), $\alpha_x \cdot g(a) = f(a) \cdot \alpha_y$.

If each α_x is invertible, we get $\alpha^{-1} : g \Rightarrow f$. We call such α a homotopy, and write $\alpha : f \simeq g$.

An equivalence of categories is a homotopy equivalence.

When f and g are morphisms of groupoids: Any $\theta : f \Rightarrow g$ is a homotopy. Homotopy Invariance of πX : Let X, Y: Top and $f, g : X \to Y$. THEOREM: If $f \simeq g$, then $\pi f \simeq \pi g$. COROLLARY: If $X \simeq Y$, then $\pi X \simeq \pi Y$.

Deformation Retractions:

Let \mathcal{D} be a subcategory of \mathcal{C} . Let $\theta : f \simeq g : \mathcal{C} \to \mathcal{E}$. We say θ is rel \mathcal{D} if $\theta_x = 1$ for all $x : \mathcal{D}$.

We say $r : \mathcal{C} \to \mathcal{D}$ is a deformation retraction if $ir \simeq \mathbf{1}_{\mathcal{C}} \operatorname{rel} \mathcal{D}.$

It follows that $ri = 1_D$, so r is a homotopy equivalence.

THEOREM: \mathcal{D} is a deformation retract of \mathcal{C} if and only if \mathcal{D} is full and essentially wide. (Non-constructive; this is equivalent to AC!)

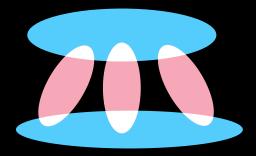
Homotopy Types in Grpd:

Let G be a connected groupoid (a fortiori non-empty). Then G deformation retracts onto any G(x).

Every connected groupoid has the homotopy type of a group.

Every groupoid has the homotopy type of a bundle of groups.

The van Kampen Theorem



A typical setting for vKT with $X \cup Y$.

Two Quick Definitions:

Let X be a space, and A be a set.

Interior cover of X: A collection $\{U_{\lambda}\}_{\lambda \in \Lambda}$ of subspaces whose interiors cover X.

> The pair (X, A) is connected: A meets all path components of X.

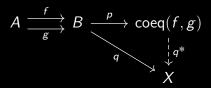
We do not require A to be a subset of X.

Coequalisers:

Recall that given a parallel pair:

$$G \xrightarrow{f} H$$

A coequaliser of f and g is a morphism $p: H \rightarrow coeq(f, g)$ such that pf = pg, and such that p is universal with respect to this property.



The van Kampen Theorem:

Let X be a space, $\{U_{\lambda}\}_{\lambda \in \Lambda}$ be an interior cover of X, and A be a set such that $(U_{\lambda} \cap U_{\mu} \cap U_{\nu}, A)$ is connected for all (not necessarily distinct) $\lambda, \mu, \nu \in \Lambda$.

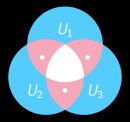
Then the following is a coequaliser in Grpd:

$$\coprod_{\lambda,\mu\in\Lambda}\pi\left(U_{\lambda}\cap U_{\mu},A\right)\xrightarrow[\iota_{\lambda,\mu}]{\iota_{\lambda,\mu}^{2}}\coprod_{\lambda\in\Lambda}\pi\left(U_{\lambda},A\right)\xrightarrow{\iota_{\lambda}}\pi(X,A).$$

Why three-fold intersections?

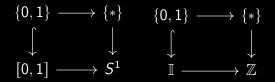
Since $\pi(U_{\lambda} \cap U_{\mu}, A)$ appears in the diagram, having a condition on two-fold intersections seems necessary.

But this is not enough.



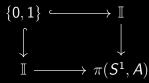
The Interval Groupoid I:

An analogy:

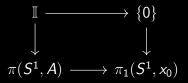


The Fundamental Group of S^1 :

From van Kampen, we can immediately obtain:



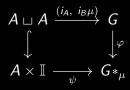
We want to cut A down to one point:



HNN extensions:

Given a group *G*, two subgroups *A*, *B*, and an isomorphism $\mu : A \cong B$, we want a universal group homomorphism $\varphi : G \to G_{*\mu}$ such that $\varphi[A] \cong \varphi[B]$ via an inner automorphism.

Construction:



Let $t = \psi(e, \iota)$. Then for a : A,

$$t \cdot \varphi(\mathbf{a}) \cdot t^{-1} = \psi(\mathbf{e}, \iota^{-1}) \cdot \psi(\mathbf{a}, \mathbf{1}_0) \cdot \psi(\mathbf{e}, \iota)$$
$$= \psi(\mathbf{a}, \mathbf{1}_1) = \varphi \mu(\mathbf{a})$$

4

Construction of Colimits

Coproducts and Coequalisers: Coproducts in Grpd are easy. If we can show that coequalisers exist, then we have all colimits.

That is the goal of this section.

Two Steps:

Suppose that we have a parallel pair:

$$G \xrightarrow{f} H$$

1] We form a groupoid with the right object set. (We perform a 0-identification on H.)

2] We form a quotient to get the right hom sets. (We construct a quotient groupoid.)

Each of these constructions has an universal property.

0-identification morphisms:

Let G : Grpd, X : Set, and σ : $Ob(G) \rightarrow X$. For simplicity, we will here assume σ is surjective.

We want $U_{\sigma}(G)$: Grpd and a morphism $\overline{\sigma} : G \to U_{\sigma}(G)$ with $Ob(\overline{\sigma}) = \sigma$ and satisfying the UP:

For any $f : G \to H$ such that Ob(f) factors through σ , there is a unique $f^* : U_{\sigma}(G) \to H$ such that $f^*\overline{\sigma} = f$.

This is a direct analogue of a *quotient map* in Top.

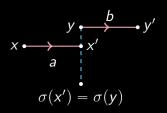
Reformulation of the UP:

Identify the sets Ob(G) and X with discrete groupoids. Then $U_{\sigma}(G)$ is defined by a pushout diagram:

$$\begin{array}{ccc} \operatorname{Ob}(G) & & \xrightarrow{\sigma} & X \\ & & \downarrow^{j} & & \downarrow^{j} \\ G & & \xrightarrow{\overline{\sigma}} & U_{\sigma}(G) \end{array}$$

The Idea:

Morphisms that cannot be composed in Gmay become composable in $U_{\sigma}(G)$.



The product $\overline{\sigma}(a) \cdot \overline{\sigma}(b)$ should exist.

Reduced Word Construction:

The elements of $\overline{U_{\sigma}(G)}$ are either: identities $[]_x$, or non-empty words $[a_1, \ldots, a_n]$ for $a_i : x_i \to x'_i$, where 1] $a_i \neq 1$ 2] $x'_{i-1} \neq x_i$ 3] $\sigma(x'_{i-1}) = \sigma(x_i)$.

The product is given by concatenating and reducing. (*This is defined by induction on word length.*) $\overline{\sigma}: G \to U_{\sigma}(G)$ is $\overline{\sigma}(a) = [a]$ on non-identities.

Consequences of this Construction:

On a set A we may construct the free group $\lambda : A \to FA$. On a graph Γ we may construct the free groupoid $\lambda : \Gamma \to \operatorname{Fr} \Gamma$.

Given two groupoids with overlaping object sets, we may form the free product G * H. (vKT in the case of simply-connected intersection.) Normal Subgroupoids:

A subgroupoid N of G is normal if: N is wide, and for any $a: x \rightarrow y$, $a \cdot N(y) = N(x) \cdot a$.

We will restrict our attention to totally-disconnected N. If Ob(f) is injective, then ker(f) is totally-disconnected.

Quotient Groupoids:

We want to construct $p : G \to G/N$ such that $\ker(p) = N$. G/N has objects Ob(G) and elements cosets $a \cdot N(y)$.

Let *R* be a collection of elements in the point groups of *G*. Have N(R) – the smallest normal subgroup containing *R*.

UP of G/N(R):

Any $f : G \to H$ which annihilates R uniquely factors through $p : G \to G/N(R).$

The Construction of Coequalisers:

First we define $\sigma : Ob(H) \rightarrow X$ by by coequalising in Set:

$$\operatorname{Ob}(G) \xrightarrow[\operatorname{Ob}(g)]{\operatorname{Ob}(g)} \operatorname{Ob}(H) \xrightarrow{\sigma} \operatorname{coeq}(\operatorname{Ob} f, \operatorname{Ob} g)$$

Now $\overline{\sigma}f(a)$ and $\overline{\sigma}g(a)$ lie in the same hom set. Define: $R(x) = \{\overline{\sigma}f(a) \cdot \overline{\sigma}g(a)^{-1} \mid a : G(y, y'), \ \sigma(y) = x\}$ Finally, form:

 $p: U_{\sigma}(G) \rightarrow U_{\sigma}(G)/N(R).$