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1 Introduction

Consider the following system of ODEs for (X(t), Y (t), Z(t)):

dX

dt
= −Y Z − νX,

dY

dt
= 1 + 2XZ − νY,

dZ

dt
= −XY − νZ.

(1)

This system arises as a very low-dimensional approximation for fluid motion,
being forced at the “intermediate scale” Y . There is a steady state, X = 0,
Y = 1

ν , Z = 0. The first aim is to show that it is stable for a large ν and that
it goes unstable for a small ν. It is also a goal to understand what “secondary
flows” (different family of steady states) arise and exchange stability with that
one.

2 Energy

Before discussing stability, we first introduce a concept.

Definition 2.1 (Energy). X2 + Y 2 + Z2 is called the energy of the system.

Consider the “zero force, zero dissipation” version of the system we are to
study:

dX

dt
= −Y Z,

dY

dt
= 2XZ,

dZ

dt
= −XY.

(2)
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Theorem 2.1. The energy of the system (2), X2 + Y 2 +Z2, is preserved over
time.

Proof. d(X2+Y 2+Z2)
dt = 2(X dX

dt + Y dY
dt + Z dZ

dt ) = 2[X(−Y Z) + Y (2XZ) +
Z(−XY )] = 2(−XY Z + 2XY Z −XY Z) = 0.

The energy gives us inspiration to prove the stability in the following, since
it can be defined as a Lyapunov function which will be introduced. Although
the energy of the system (1) is not preserved in time, it is still very useful.

3 Stability for ν ≥ 1

Now we introduce the definition of various stability.

Definition 3.1 (Stability). A solution ψ of a system

dx

dt
= F (t, x)

which is defined for t ≥ 0 is said to be stable if, given any ϵ > 0, there exists a
δ > 0 such that any solution ϕ of the system satisfying

|ϕ(0)− ψ(0)| < δ

satisfies
|ϕ(t)− ψ(t)| < ϵ (t ≥ 0).

Note that this requires that solutions starting near ψ(0) exist for all t ≥ 0.

Definition 3.2 (Asymptotic stability). A solution ψ of a system

dx

dt
= F (t, x)

which is defined for t ≥ 0 is said to be asymptotically stable if, ψ is stable, and
there exists a δ > 0 such that any solution ϕ of the system satisfying

|ϕ(0)− ψ(0)| < δ

satisfies
|ϕ(t)− ψ(t)| → 0 (t→ ∞).

Definition 3.3 (Global asymptotic stability). A solution ψ of a system

dx

dt
= F (t, x)

which is defined for t ≥ 0 is said to be globally asymptotically stable if, ψ is
stable, and for any ϕ(0) ∈ R,

|ϕ(t)− ψ(t)| → 0 (t→ ∞).
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The steady state X = 0, Y = 1
ν , Z = 0 of (1) shows stability for ν ≥ 1.

Theorem 3.1. The steady state of (1), X = 0, Y = 1
ν , Z = 0, is asymptotically

stable for ν > 1.

We use the method of linearizing the system of ODEs to prove this theorem.

Lemma 3.1.1. Let
dx

dt
= Ax+ f(t, x)

where A is a real constant matrix with the characteristic roots all having negative
real parts. Let f be real continuous for small |x| and t ≥ 0, and

f(t, x) = o(|x|) (|x| → 0)

uniformly in t, t ≥ 0. Then the identically zero solution is asymptotically stable.

Please refer to [1] for the proof of this lemma.

Proof of theorem 3.1. To use lemma 3.1.1, we need to transfer the steady state
of (1), X = 0, Y = 1

ν , Z = 0, to be the identically zero solution at first, so we
need to transform variables.

Let x = X, y = Y − 1
ν , z = Z, then X = x, Y = y + 1

ν , Z = z.
Therefore,

dx

dt
=
dX

dt
= −Y Z − νX = −(y +

1

ν
)z − νx = −yz − 1

ν
z − νx,

dy

dt
=
dY

dt
= 1 + 2XZ − νY = 1 + 2xz − ν(y +

1

ν
) = 2xz − νy,

dz

dt
=
dZ

dt
= −XY − νZ = −x(y + 1

ν
)− νz = −xy − 1

ν
x− νz.

(3)

Namely,

d

dt

xy
z

 =

−ν − 1
ν

−ν
− 1

ν −ν

xy
z

+

−yz
2xz
−xy

 . (4)

Let A =

−ν − 1
ν

−ν
− 1

ν −ν

, then

|λI−A| =

∣∣∣∣∣∣
λ+ ν 1

ν
λ+ ν

1
ν λ+ ν

∣∣∣∣∣∣ = (λ+ν)3− 1

ν2
(λ+ν) = [(λ+ν)2− 1

ν2
](λ+ν).

Let g(λ) = (λ+ν)2− 1
ν2 , then g(0) = ν2− 1

ν2 > 0 for ν > 1. Therefore, g(λ)
has two negative roots.
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The characteristic roots of A are the two negative roots of g(λ) and −ν, so
they are all negative.

Let f(t, x, y, z) =

−yz
2xz
−xy

, then lim
|(x,y,z)|→0

1

|(x, y, z)|
f(t, x, y, z)

= lim
(x,y,z)→0

1√
x2 + y2 + z2

−yz
2xz
−xy

 = lim
(x,y,z)→0


− sgn(yz)√

x2

y2z2
+ 1

z2
+ 1

y2

2sgn(xz)√
1
z2

+ y2

x2z2
+ 1

x2

− sgn(xy)√
1
y2 + 1

x2 + z2

x2y2

 = 0.

Therefore,

f(t, x, y, z) = o(|(x, y, z)|) (|(x, y, z)| → 0)

uniformly in t, t ≥ 0.
By lemma 3.1.1, x = 0, y = 0, z = 0 is asymptotically stable, so X = 0,

Y = 1
ν , Z = 0 is asymptotically stable.

Theorem 3.2. The steady state of (1), X = 0, Y = 1
ν , Z = 0, is stable for

ν = 1.

We introduce a concept called Lyapunov function to prove this theorem.

Definition 3.4 (Lyapunov function). Suppose dx
dt = f(x), f(0) = 0. V : Rn →

R is called a Lyapunov function if there exists an open set R ∋ 0 such that
1) V (x) is continuous in R;
2) For any x ∈ R\{0}, V (x) > 0;
3) V (0) = 0;
4) For any x ∈ R, V ′(x) = ∇V (x) · f(x) ≤ 0.

Lemma 3.2.1. If there exists a Lyapunov function, then the origin is stable.

Proof. Let Sϵ = {x ∈ R | |x| = ϵ} for small ϵ > 0 such that Sϵ ∈ R.
V attains minimum on Sϵ. Call it m > 0.
Since V is continuous in R, there exists δ > 0 such that if |x| < δ, then

V (x) < m.
Suppose |x(0)| < δ, then V (x(0)) < m. Then for any t ≥ 0, V (x(t)) ≤

V (x(0)) < m.
Assume |x(t)| = ϵ for some t, then V (x(t)) ≥ m. Contradiction!
Hence |x(t)| < ϵ, so the origin is stable.

Proof of theorem 3.2. We implement the same transformation of variables.
Let x = X, y = Y − 1

ν , z = Z, then we will get (3).
Let V (x, y, z) = x2 + y2 + z2, then
1) V (x, y, z) is continuous in R3;
2) For any (x, y, z) ∈ R3\{0}, V (x, y, z) > 0;
3) V (0, 0, 0) = 0;
4) For any x ∈ R3, V ′(x) = 2(xdx

dt + y dy
dt + z dz

dt ) = 2[−(x+ z)2 − y2] ≤ 0.
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Therefore, V (x, y, z) is a Lyapunov function. By lemma 3.2.1, x = 0, y = 0,
z = 0 is stable, so X = 0, Y = 1

ν , Z = 0 is stable.

Now we have proved the stability of the steady state of (1) X = 0, Y = 1
ν ,

Z = 0 for ν ≥ 1. However, there is a stronger conclusion.

Theorem 3.3. The steady state of (1), X = 0, Y = 1
ν , Z = 0, is globally

asymptotically stable for ν ≥ 1.

Lemma 3.3.1 (LaSalle’s invariance principle). Suppose a system is represented
as dx

dt = f(x) where x is the vector of variables, with f(0) = 0. Let I be the
union of complete trajectories contained entirely in the set {x | V ′(x) = 0}. If
a C1 function V (x) can be found such that

1) V ′(x) is negative semidefinite, i.e. V ′(x) ≤ 0 for all x;
2) V (x) is positive definite, i.e.

i) V (x) > 0 for all x ̸= 0;
ii) V (0) = 0;

3) V (x) is radially unbounded, i.e. V (x) → ∞, as ||x|| → ∞;
and if I contains no trajectory of the system except the trivial trajectory

x(t) = 0 for t ≥ 0, then the origin is globally asymptotically stable.

Please refer to [2] for the proof of this lemma.

Proof of theorem 3.3. Let x = X, y = Y − 1
ν , z = Z, then we will get (3).

Let V (x, y, z) = x2 + y2 + z2, then
1) V ′(x, y, z) = 2(xdx

dt +y
dy
dt +z

dz
dt ) = 2(− 2

νxz−ν(x
2+y2+z2)) ≤ 2(− 2

νxz−
2ν|xz| − νy2).

If xz ≥ 0, then − 2
νxz − 2ν|xz| − νy2 = − 2

νxz − 2νxz − νy2 ≤ 0;
If xz < 0, then− 2

νxz−2ν|xz|−νy2 = − 2
νxz+2νxz−νz2 = 2(ν− 1

ν )xz−νy
2 ≤

2(1− 1)xz ≤ 0.
Hence V ′(x, y, z) ≤ 0 for all (x, y, z);
2) V (x, y, z) > 0 for all (x, y, z) ̸= 0, and V (0, 0, 0) = 0;
3) V (x, y, z) → ∞, as ||(x, y, z)|| → ∞.
Let V ′(x, y, z) = 0, then V ′(x, y, z) = 2(− 2

νxz−ν(x
2+y2+z2)) = 2(− 2

νxz−
2ν|xz| − νy2) = 0, so |x| = |z|.

If xz ≥ 0, then x = y = z = 0;
If xz < 0 and ν > 1, then x = y = z = 0;
If xz < 0 and ν = 1, then x = −z, y = 0. By (3), dy

dt = 2xz − νy = 2xz = 0,
so x = 0 or z = 0. Whether x = 0 or z = 0, x = z = 0.

Hence {(x, y, z) | V ′(x, y, z) = 0} = {0}.
By lemma 3.3.1, x = 0, y = 0, z = 0 is globally asymptotically stable, so

X = 0, Y = 1
ν , Z = 0 is globally asymptotically stable.

4 instability for 0 < ν < 1

The steady state X = 0, Y = 1
ν , Z = 0 of (1) shows instability for 0 < ν < 1.
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Theorem 4.1. The steady state of (1), X = 0, Y = 1
ν , Z = 0, is unstable for

0 < ν < 1.

Similarly to theorem 3.1, We use the method of linearizing the system of
ODEs to prove this theorem.

Lemma 4.1.1. Let
dx

dt
= Ax+ f(t, x)

where A is a real constant matrix with at least one characteristic root having
positive real part. Let f be real continuous for small |x| and t ≥ 0, and

f(t, x) = o(|x|) (|x| → 0)

uniformly in t, t ≥ 0. Then the identically zero solution is unstable.

Please refer to [1] for the proof of this lemma.

Proof of theorem 4.1. Let x = X, y = Y − 1
ν , z = Z, then we will get (4).

Let A =

−ν − 1
ν

−ν
− 1

ν −ν

, then

|λI −A| = [(λ+ ν)2 − 1

ν2
](λ+ ν).

Let g(λ) = (λ+ ν)2 − 1
ν2 , then g(0) = ν2 − 1

ν2 < 0 for 0 < ν < 1. Therefore,
g(x) has a positive root.

The characteristic roots of A are the two roots of g(x) and −ν, so a charac-
teristic root of A is positive.

Let f(t, x, y, z) =

−yz
2xz
−xy

, then similarly to theorem 3.1,

f(t, x, y, z) = o(|(x, y, z)|) (|(x, y, z)| → 0)

uniformly in t, t ≥ 0.
By lemma 3.1.1, x = 0, y = 0, z = 0 is unstable, so X = 0, Y = 1

ν , Z = 0 is
unstable.

5 The Other Two Steady States for 0 < ν < 1

For (1), if we let dX
dt = dY

dt = dZ
dt = 0, then we will find another two steady

states for 0 < ν < 1: X =
√

1−ν2

2 , Y = ν, Z = −
√

1−ν2

2 and X = −
√

1−ν2

2 ,

Y = ν, Z =
√

1−ν2

2 . Actually, they show stability.
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Theorem 5.1. The steady states of (1), X =
√

1−ν2

2 , Y = ν, Z = −
√

1−ν2

2

and X = −
√

1−ν2

2 , Y = ν, Z =
√

1−ν2

2 are asymptotically stable for 0 < ν < 1.

Similarly to theorem 3.1, We use the method of linearizing the system of
ODEs to prove this theorem.

Proof. Let x = X −
√

1−ν2

2 , y = Y − ν, z = Z +
√

1−ν2

2 , then X = x+
√

1−ν2

2 ,

Y = y + ν, Z = z −
√

1−ν2

2 .

dx

dt
=
dX

dt
= −Y Z − νX = −νx+

√
1− ν2

2
y − νz − yz,

dy

dt
=
dY

dt
= 1 + 2XZ − νY = −

√
2(1− ν2)x− νy +

√
2(1− ν2)z + 2xz,

dz

dt
=
dZ

dt
= −XY − νZ = −νx−

√
1− ν2

2
y − νz − xy.

Namely,

d

dt

xy
z

 =

 −ν
√

1−ν2

2 −ν
−
√

2(1− ν2) −ν
√
2(1− ν2)

−ν −
√

1−ν2

2 −ν


xy
z

+

−yz
2xz
−xy

 .

Let A =

 −ν
√

1−ν2

2 −ν
−
√
2(1− ν2) −ν

√
2(1− ν2)

−ν −
√

1−ν2

2 −ν

, then

|λI−A| =

∣∣∣∣∣∣∣∣
λ+ ν −

√
1−ν2

2 ν√
2(1− ν2) λ+ ν −

√
2(1− ν2)

ν
√

1−ν2

2 λ+ ν

∣∣∣∣∣∣∣∣ = (λ+2ν)(λ2+νλ+2−2ν2).

Let g(λ) = λ2 + νλ+2− 2ν2 = (x+ ν
2 )

2 +2− 9
4ν

2, then g(0) = 2− 2ν2 > 0.
If 2− 9

4ν
2 ≤ 0, then g(x) has two negative roots;

If 2 − 9
4ν

2 > 0, then g(x) has two imaginary roots with negative real part
− 1

2ν.
The characteristic roots of A are the two roots of g(x) and −2ν, so their real

parts are all negative.

Let f(t, x, y, z) =

−yz
2xz
−xy

, then similarly to theorem 3.1,

f(t, x, y, z) = o(|(x, y, z)|) (|(x, y, z)| → 0)
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uniformly in t, t ≥ 0.

By lemma 3.1.1, x = 0, y = 0, z = 0 is asymptotically stable, soX =
√

1−ν2

2 ,

Y = ν, Z = −
√

1−ν2

2 is asymptotically stable.

Similarly, X = −
√

1−ν2

2 , Y = ν, Z =
√

1−ν2

2 is also asymptotically stable.

We can use the plane Z = X to divide the whole space into two half-spaces
and a plane, then we will get some more stronger results.

Theorem 5.2. The steady state of (1), X = 0, Y = 1
ν , Z = 0, is globally

asymptotically stable on the plane Z = X for 0 < ν < 1. Namely, take any
point on the plane Z = X as the initial condition, the trajectory will tend to
X = 0, Y = 1

ν , Z = 0, as t→ ∞.

Similarly to theorem 3.3, we use lemma 3.3.1 LaSalle’s invariance principle
to prove this theorem.

Proof. A normal vector of the plane Z = X is (1, 0,−1). The vector space of
the the original system (1) on the plane Z = X is (dXdt ,

dY
dt ,

dZ
dt ) = (−Y Z −

νX, 1 + 2XZ − νY,−XY − νZ) = (−XY − νX, 1 + 2X2 − νY,−XY − νX).
(1, 0,−1) · (dXdt ,

dY
dt ,

dZ
dt ) = (−XY − νX)− (−XY − νX) = 0, so (1, 0,−1) ⊥

(dXdt ,
dY
dt ,

dZ
dt ).

Hence the vector space of the the system (1) on the plane Z = X is parallel
to the plane Z = X itself, which means that any trajectory of the system (1)
whose initial value is a point on the plane Z = X keeps on that plane for any t.

We project the system (1) on the plane Z = X onto the XY -plane, then it
becomes a 2-dimensional system:

dX

dt
= −XY − νX,

dY

dt
= 1 + 2X2 − νY.

Let x = X, y = Y − 1
ν , then X = x, Y = y + 1

ν .
Therefore,

dx

dt
=
dX

dt
= −XY − νX = −x(y + 1

ν
)− νx = −xy − (ν +

1

ν
)x,

dy

dt
=
dY

dt
= 1 + 2X2 − νY = 1 + 2x2 − ν(y +

1

ν
) = 2x2 − νy.

(5)

Let V (x, y) = 2x2 + y2, then
1) V ′(x, y) = 2(2xdx

dt + y dy
dt ) = 2(−2(ν + 1

ν )x
2 − νy2) ≤ 0 for all (x, y);

2) V (x, y) > 0 for all (x, y) ̸= 0, and V (0, 0) = 0;
3) V (x, y) → ∞, as ||(x, y)|| → ∞.
Moreover, {(x, y)|V ′(x, y) = 0} = {0}.
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By lemma 3.3.1, x = 0, y = 0 is globally asymptotically stable, so X = 0,
Y = 1

ν is globally asymptotically stable for the system (5).
Hence X = 0, Y = 1

ν , Z = 0, is globally asymptotically stable on the plane
Z = X for the system (1).

I suppose that X =
√

1−ν2

2 , Y = ν, Z = −
√

1−ν2

2 is globally asymptotically

stable in the half-space Z < X and X = −
√

1−ν2

2 , Y = ν, Z =
√

1−ν2

2

is globally asymptotically stable in the half-space Z < X, and the following
lemma may be used to prove these two conjectures.

Lemma 5.2.1. (Local invariant set theorem) Consider an autonomous system
of the form

dx

dt
= f(x),

with f continuous, and let V (x) be a scalar function with continuous first partial
derivatives. Assume that 1) for some l > 0, the region Ωl defined by V (x) < l
is bounded;

2) V ′(x) ≤ 0 for all x in Ωl.
Let R be the set of all points within Ωl where V

′(x) = 0, and M be the largest
invariant set in R. Then, every solution x(t) originating in Ωl tends to M as
t→ ∞.

Please refer to [3] for the proof of this lemma.

6 Generalization

Let I1, I2, I3 > 0 be the given moments of inertia. The equations of motion for
the rigid body with angular velocities (Ω1,Ω2,Ω3) ∈ R3 about its moment of
inertia axes are

I1
dΩ1

dt
= (I2 − I3)Ω2Ω3,

I2
dΩ2

dt
= (I3 − I1)Ω1Ω3,

I3
dΩ3

dt
= (I1 − I2)Ω1Ω2.

Without loss of generality, we assume I1 ≤ I2 ≤ I3. We study a slightly more
general class of systems, which include the addition of linear friction and body
forcing.

I1
dΩ1

dt
= aΩ2Ω3 − νΩ1,

I2
dΩ2

dt
= bΩ1Ω3 − νΩ2 + 1,

I3
dΩ3

dt
= cΩ1Ω2 − νΩ3,

(6)
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Figure 1: Rigid body with booster rocket forcing rotation about I3 axis

where a+ b+ c = 0 with a, c < 0 and b > 0.
For ν ≥ 4

√
ac, there is exactly one root

(Ω∗
1,Ω

∗
2,Ω

∗
3) = (0,

1

ν
, 0).

For 0 < ν < 4
√
ac, there are exactly three real roots

(Ω∗
1,Ω

∗
2,Ω

∗
3) = (0,

1

ν
, 0),

(Ω+
1 ,Ω

+
2 ,Ω

+
3 ) = (

√√
ac− ν2

−bc
,
ν√
ac
,−

√√
ac− ν2

−ab
),

(Ω−
1 ,Ω

−
2 ,Ω

−
3 ) = (−

√√
ac− ν2

−bc
,
ν√
ac
,

√√
ac− ν2

−ab
).

Theorem 6.1. The steady state of (6), (Ω∗
1,Ω

∗
2,Ω

∗
3) = (0, 1ν , 0), is globally

asymptotically stable for ν ≥ 4
√
ac.

Proof. Let x = Ω1, y = Ω2 − 1
ν , z = Ω3, then Ω1 = x, Ω2 = y + 1

ν , Ω3 = z.
Therefore,

I1
dx

dt
= I1

dΩ1

dt
= aΩ2Ω3 − νΩ1 = −νx+

a

ν
z + ayz,

I2
dy

dt
= I2

dΩ2

dt
= bΩ1Ω3 − νΩ2 + 1 = −νy + bxz,

I3
dz

dt
= I3

dΩ3

dt
= cΩ1Ω2 − νΩ3 =

c

ν
x− νz + cxy.

(7)

Let V (x, y, z) = − I1
a x

2 + 2 I2
b y

2 − I3
c z

2, then
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1) V ′(x, y, z) = 2(− I1
a x

dx
dt +2 I2

b y
dy
dt −

I3
c z

dz
dt ) = 2(νax

2− 2ν
b y

2+ ν
c z

2− 2
νxz) ≤

2(− 2ν√
ac
|xz| − 2

νxz −
2ν
b y

2).

If xz ≥ 0, then − 2ν√
ac
|xz| − 2

νxz −
2ν
b y

2 = − 2ν√
ac
xz − 2

νxz −
2ν
b y

2 ≤ 0;

If xz < 0, then − 2ν√
ac
|xz| − 2

νxz −
2ν
b y

2 = 2ν√
ac
xz − 2

νxz −
2ν
b y

2 = 2( ν√
ac

−
1
ν )xz −

2ν
b y

2 ≤ 2(
4
√
ac√
ac

− 1
4
√
ac
)xz = 0.

Hence V ′(x, y, z) ≤ 0 for all (x, y, z);
2) V (x, y, z) > 0 for all (x, y, z) ̸= 0, and V (0, 0, 0) = 0;
3) V (x, y, z) → ∞, as ||(x, y, z)|| → ∞.
Let V ′(x, y, z) = 0, then V ′(x, y, z) = 2(νax

2 − 2ν
b y

2 + ν
c z

2 − 2
νxz) =

2(− 2ν√
ac
|xz| − 2

νxz −
2ν
b y

2) = 0, so
√
−c|x| =

√
−a|z|.

If xz ≥ 0, then x = y = z = 0; If xz < 0 and ν > 4
√
ac, then x = y = z = 0; If

xz < 0 and ν = 4
√
ac, then

√
−cx = −

√
−az, y = 0. By (7), I2

dy
dt = −νy+bxz =

bxz = 0, so x = 0 or z = 0. Whether x = 0 or z = 0, x = z = 0.
Hence {(x, y, z) | V ′(x, y, z) = 0} = {0}.
By lemma 3.3.1, x = 0, y = 0, z = 0 is globally asymptotically stable, so

(Ω∗
1,Ω

∗
2,Ω

∗
3) = (0, 1ν , 0) is globally asymptotically stable.

Theorem 6.2. The steady state of (6), (Ω∗
1,Ω

∗
2,Ω

∗
3) = (0, 1ν , 0), is unstable for

0 < ν < 4
√
ac.

Proof. Let x = Ω1, y = Ω2 − 1
ν , z = Ω3, then

d

dt

xy
z

 =

− ν
I1

a
νI1

− ν
I2

c
νI3

− ν
I3

xy
z

+

ayz
I1
bxz
I2
cxy
I3

 .

Let A =

− ν
I1

a
νI1

− ν
I2

c
νI3

− ν
I3

, then

|λI −A| = [(λ+
ν

I1
)(λ+

ν

I3
)− ac

ν2I1I3
](λ+

ν

I2
).

Let g(λ) = (λ + ν
I1
)(λ + ν

I3
) − ac

ν2I1I3
, then g(0) = 1

I1I3
(ν2 − ac

ν2 ) < 0 for

0 < ν < 4
√
ac. Therefore, g(x) has a positive root.

The characteristic roots of A are the two roots of g(x) and − ν
I2
, so a char-

acteristic root of A is positive.

Let f(t, x, y, z) =

ayz
I1
bxz
I2
cxy
I3

, then lim
|(x,y,z)|→0

1

|(x, y, z)|
f(t, x, y, z)

= lim
(x,y,z)→0

1√
x2 + y2 + z2

ayz
I1
bxz
I2
cxy
I3

 = lim
(x,y,z)→0


asgn(yz)

I1

√
x2

y2z2
+ 1

z2
+ 1

y2

bsgn(xz)

I2

√
1
z2

+ y2

x2z2
+ 1

x2

csgn(xy)

I3

√
1
y2 + 1

x2 + z2

x2y2

 = 0.
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Therefore,

f(t, x, y, z) = o(|(x, y, z)|) (|(x, y, z)| → 0)

uniformly in t, t ≥ 0.
By lemma 3.1.1, x = 0, y = 0, z = 0 is unstable, so (Ω∗

1,Ω
∗
2,Ω

∗
3) = (0, 1ν , 0)

is unstable.

I suppose that The steady states of (6), (Ω+
1 ,Ω

+
2 ,Ω

+
3 ) = (

√√
ac−ν2

−bc , ν√
ac
,−

√√
ac−ν2

−ab )

and (Ω−
1 ,Ω

−
2 ,Ω

−
3 ) = (−

√√
ac−ν2

−bc , ν√
ac
,
√√

ac−ν2

−ab ) are asymptotically stable for

0 < ν < 4
√
ac. We try to prove it similarly to theorem 5.1

Let x = Ω1 −
√√

ac−ν2

−bc , y = Ω2 − ν√
ac
, z = Ω3 +

√√
ac−ν2

−ab , then Ω1 =

x+
√√

ac−ν2

−bc , Ω2 = y + ν√
ac
, Ω3 = z −

√√
ac−ν2

−ab .

I1
dx

dt
= I1

dΩ1

dt
= aΩ2Ω3 − νΩ1 = −ν +

√
a(
√
ac− ν2)

−b
y −

√
a

c
νz + ayz,

I2
dy

dt
= I2

dΩ2

dt
= bΩ1Ω3 − νΩ2 + 1 = −

√
b(
√
ac− ν2)

−a
x− νy +

√
b(
√
ac− ν2)

−c
z + bxz,

I3
dz

dt
= I3

dΩ3

dt
= cΩ1Ω2 − νΩ3 = −

√
c

a
νx−

√
c(
√
ac− ν2)

−b
y − νz + cxy.

Namely,

d

dt

xy
z

 =


− ν

I1
1
I1

√
a(

√
ac−ν2)
−b − ν

I1

√
a
c

− 1
I2

√
b(
√
ac−ν2)
−a − ν

I2
1
I2

√
b(
√
ac−ν2)
−c

− ν
I3

√
c
a − 1

I3

√
c(
√
ac−ν2)
−b − ν

I3


xy
z

+

ayz
I1
bxz
I2
cxy
I3

 .

Let A =


− ν

I1
1
I1

√
a(

√
ac−ν2)
−b − ν

I1

√
a
c

− 1
I2

√
b(
√
ac−ν2)
−a − ν

I2
1
I2

√
b(
√
ac−ν2)
−c

− ν
I3

√
c
a − 1

I3

√
c(
√
ac−ν2)
−b − ν

I3

, then

|λI −A| =

∣∣∣∣∣∣∣∣∣
λ+ ν

I1
− 1

I1

√
a(

√
ac−ν2)
−b

ν
I1

√
a
c

1
I2

√
b(
√
ac−ν2)
−a λ+ ν

I2
− 1

I2

√
b(
√
ac−ν2)
−c

ν
I3

√
c
a

1
I3

√
c(
√
ac−ν2)
−b λ+ ν

I3

∣∣∣∣∣∣∣∣∣
= λ3 + (

1

I1
+

1

I2
+

1

I3
)νλ2 + (

1

I1I2
+

1

I2I3
)
√
acλ+

4ν(
√
ac− ν2)

I1I2I3
.

I cannot find a root of |λI − A|, so I cannot factorize it. However, if the
ODE system satisfies some symmetry, it is easy to find a root.
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Theorem 6.3. If I1 = I3, then the steady states of (6), (Ω+
1 ,Ω

+
2 ,Ω

+
3 ) =

(
√√

ac−ν2

−bc , ν√
ac
,−

√√
ac−ν2

−ab ) and (Ω−
1 ,Ω

−
2 ,Ω

−
3 ) = (−

√√
ac−ν2

−bc , ν√
ac
,
√√

ac−ν2

−ab )

are asymptotically stable for 0 < ν < 4
√
ac.

Proof.

|λI −A| = λ3 + (
2

I1
+

1

I2
)νλ2 +

2
√
ac

I1I2
λ+

4ν(
√
ac− ν2)

I21I2

= (λ+
2ν

I1
)[λ2 +

ν

I2
λ+

2(
√
ac− ν2)

I1I2
].

Let g(λ) = λ2 + ν
I2
λ + 2(

√
ac−ν2)
I1I2

= (λ + ν
2I2

)2 + 2(
√
ac−ν2)
I1I2

− ν2

4I2
2
, then

g(0) = 2(
√
ac−ν2)
I1I2

> 0.

If 2(
√
ac−ν2)
I1I2

− ν2

4I2
2
≤ 0, then g(x) has two negative roots;

If 2(
√
ac−ν2)
I1I2

− ν2

4I2
2
> 0, then g(x) has two imaginary roots with negative real

part − ν
2I2

.
The characteristic roots of A are the two roots of g(x) and −2ν, so their real

parts are all negative.

Let f(t, x, y, z) =

ayz
I1
bxz
I2
cxy
I1

, then similarly to theorem 6.1,

f(t, x, y, z) = o(|(x, y, z)|) (|(x, y, z)| → 0)

uniformly in t, t ≥ 0.
By lemma 3.1.1, x = 0, y = 0, z = 0 is asymptotically stable, so (Ω+

1 ,Ω
+
2 ,Ω

+
3 ) =

(
√√

ac−ν2

−bc , ν√
ac
,−

√√
ac−ν2

−ab ) is asymptotically stable.

Similarly, (Ω−
1 ,Ω

−
2 ,Ω

−
3 ) = (−

√√
ac−ν2

−bc , ν√
ac
,
√√

ac−ν2

−ab ) is also asymptoti-

cally stable.
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