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1 Introduction

Consider the following system of ODEs for (X (t),Y (¢), Z(t)):

X yzoux
dt
Y
d—:l—l—QXZ—Z/Y, (1)
dt
% =-XY —vZ.
dt

This system arises as a very low-dimensional approximation for fluid motion,
being forced at the “intermediate scale” Y. There is a steady state, X = 0,
Y = %, Z = 0. The first aim is to show that it is stable for a large v and that
it goes unstable for a small v. It is also a goal to understand what “secondary
flows” (different family of steady states) arise and exchange stability with that
one.

2 Energy
Before discussing stability, we first introduce a concept.
Definition 2.1 (Energy). X2+ Y? + Z2 is called the energy of the system.

Consider the “zero force, zero dissipation” version of the system we are to
’
study:

dX

= =_YZ

dt ’

dy

= =2XZ 2
i , 2)
dz

= = _XYV.

dt



Theorem 2.1. The energy of the system (2), X? +Y?2 + Z2, is preserved over
time.

Proof. 4XCHYERZY _ o(xdX | ydY 4 zdZy _ 9IX(_YZ) 4+ Y(2XZ) +
Z(—XY)| =2(~XYZ +2XYZ - XYZ)=0. O

The energy gives us inspiration to prove the stability in the following, since
it can be defined as a Lyapunov function which will be introduced. Although
the energy of the system (1) is not preserved in time, it is still very useful.

3 Stability for v > 1

Now we introduce the definition of various stability.

Definition 3.1 (Stability). A solution ¢ of a system

dx
— = F(t
dt (71')

which is defined for t > 0 is said to be stable if, given any € > 0, there exists a
0 > 0 such that any solution ¢ of the system satisfying

¢(0) — ¥ (0)] <6

satisfies

[¢(t) =) <e  (t=0).
Note that this requires that solutions starting near ¥ (0) exist for all ¢ > 0.

Definition 3.2 (Asymptotic stability). A solution v of a system

dz
— =F(t
dt (t,2)
which is defined for t > 0 is said to be asymptotically stable if, 1 is stable, and
there exists a 6 > 0 such that any solution ¢ of the system satisfying

6(0) = (0)] < 6

satisfies

[o(t) —v(t)| =0 (t = o0).
Definition 3.3 (Global asymptotic stability). A solution 1 of a system

dx
= _F(t
= F(t.)

which is defined for t > 0 is said to be globally asymptotically stable if, 1 is
stable, and for any ¢(0) € R,

[o(t) =¢(®)] =0 (t = o0).



The steady state X =0, Y = 1, Z =0 of (1) shows stability for v > 1.

Theorem 3.1. The steady state of (1), X =0,Y = %, 7 =0, is asymptotically
stable for v > 1.

We use the method of linearizing the system of ODEs to prove this theorem.

Lemma 3.1.1. Let i
== Az f(t,)

where A is a real constant matriz with the characteristic roots all having negative
real parts. Let f be real continuous for small |x| and t > 0, and

ft,z) = o(lx])  (Jz[ —0)

uniformly int, t > 0. Then the identically zero solution is asymptotically stable.

Please refer to [1] for the proof of this lemma.

Proof of theorem 3.1. To use lemma 3.1.1, we need to transfer the steady state

of (1), X =0,Y = %, Z =0, to be the identically zero solution at first, so we

need to transform variables.
Letx:X,y:Y—%,zzZﬂcheangc,Y:y—i—%,Z:z.

Therefore,
d dXxX 1 1
ﬁ=EZ—YZ—VXZ—(y+;)z—uw=—yz—;z—um,
d dy 1
di;:E:1+2XZ—VY:1+2mz—y(y+;):2x2—yy, (3)
d az 1 1
d;j = Z—XY—VZZ—JJ(y—F;)—Vz:—xy—;ac—yz.
Namely,
d[* —v -1 T —yz
T yl| = —v y|+ | 2zz |. (4)
z -1 —v z —zy
_y 1
Let A= —v , then
1 —
A+v % 1 1
IN[—A| = At v ) = (A1)’ =5 () = [(49) = 5] ().
> +v

Let g(A) = (A+v)?— 2%, then g(0) = v — & > 0 for v > 1. Therefore, g(\)
has two negative roots.



The characteristic roots of A are the two negative roots of g(\) and —v, so
they are all negative.

—yz )
Let f(t,z,y,2) = | 2zz |, then lim —f(t,z,y,2)
|(@.y,2)|=0 (2, Y, 2)]
—zy
__ sgn(yz)
[ a2 1 1
lim ! ;:i/zz lim ) © 0
= _— = P = (.
(2,y,2)=0 /22 + 42 + 22 (@y,2)—0 | VEtiztoe
—Ty _ sgn(zy)

fa 1 22
u2 +m2 +rp2y2

Therefore,

f(tvxvyvz)ZO(Kmvva)D (|(m,y,z)| _>0)

uniformly in ¢, ¢ > 0.
By lemma 3.1.1, = 0, y = 0, z = 0 is asymptotically stable, so X = 0,
Y =1 7 =0 is asymptotically stable. O

)

Theorem 3.2. The steady state of (1), X =0, Y = %, Z =0, is stable for
v=1.

We introduce a concept called Lyapunov function to prove this theorem.

Definition 3.4 (Lyapunov function). Suppose % = f(z), f(0) =0. V : R —
R is called a Lyapunov function if there exists an open set R > 0 such that

1) V(z) is continuous in R;

2) For any x € R\{0}, V(x) > 0;

3) V(0) = 0;

4) For any x € R, V'(x) = VV(z) - f(z) <0.

Lemma 3.2.1. If there exists a Lyapunov function, then the origin is stable.

Proof. Let S = {x € R| |z| = €} for small € > 0 such that S € R.
V attains minimum on S.. Call it m > 0.
Since V is continuous in R, there exists ¢ > 0 such that if |x| < ¢, then

V(z) < m.

Suppose |z(0)| < §, then V(z(0)) < m. Then for any t > 0, V(z(t)) <
V(z(0)) < m.

Assume |z(t)| = e for some t, then V(z(t)) > m. Contradiction!

Hence |z(t)| < €, so the origin is stable. O

Proof of theorem 3.2. We implement the same transformation of variables.
Letx=X,y=Y — %, z = Z, then we will get (3).
Let V(z,y,2) = 2% + 3% + 22, then
1) V(x,y,2) is continuous in R?;
2) For any (z,y,2) € R3\{0}, V(z,y,2) > 0;
3) V(0,0,0) = 0;
4) For any z € R3, V'(z) = 2(z% 4 y% +2%) =2[-(z+2)2 —y?] <0.



Therefore, V(z,y, z) is a Lyapunov function. By lemma 3.2.1, z =0, y = 0,
z = 0 is stable, szzO,Yz%,Zins stable. O

Now we have proved the stability of the steady state of (1) X =0, Y =1
Z =0 for v > 1. However, there is a stronger conclusion.

Theorem 3.3. The steady state of (1), X = 0,Y = L, Z =0, is globally
asymptotically stable for v > 1.

Lemma 3.3.1 (LaSalle’s invariance principle). Suppose a system is represented
as % = f(x) where x is the vector of variables, with f(0) = 0. Let T be the
union of complete trajectories contained entirely in the set {x | V'(z) = 0}. If
a C* function V(z) can be found such that
1) V'(x) is negative semidefinite, i.e. V'(x) <0 for all x;
2) V(x) is positive definite, i.e.
i) V(x) >0 for all z #0;
it) V(0) = 0;
3) V(x) is radially unbounded, i.e. V(x) — oo, as ||z|| = oo;
and if I contains mo trajectory of the system except the trivial trajectory
x(t) =0 fort > 0, then the origin is globally asymptotically stable.

Please refer to [2] for the proof of this lemma.

Proof of theorem 3.3. Let x = X, y=Y — %, z = Z, then we will get (3).

Let V(z,y,2) = 22 + 32 + 22, then

1) V/(,y,2) = 2o 1y 1 282) = 2= 22— w(a? 447 +22)) < 22wz
2v|zz| — vy?).

If xzz > 0, then —%xz —2|zz| —vy? = —%xz —uzz — vy? < 0;

Ifzz <0, then —2zz—2v|zz|—vy? = —2z24+2r2—12? = 2(v—1
2(1 — 1)zz < 0.

Hence V'(x,y,2) <0 for all (x,y, 2);

2) V(z,y,z) >0 for all (z,y,z) # 0, and V(0,0,0) = 0;

3) V(x,y,2z) — oo, as ||(z,y, 2)|| = oc.

Let V'(z,y,2) =0, then V'(z,y, 2) = 2(— 2zz —v(2? +y* +2?)) = 2(— 22—
2v|zz| — vy?) =0, so |z| = |2|.

If xz >0, then x =y = 2 = 0;

Ifzz<Oand v >1,thenz =y =2=0;

If zz <0and v =1, then x = —z, y = 0. By (3), %:2302—1/31:2962:0,
sox=0o0r z=0. Whether z=0o0r 2 =0, x =z =0.

Hence {(z,y,2) | V'(x,y,2) = 0} = {0}.

By lemma 3.3.1, x = 0, y = 0, z = 0 is globally asymptotically stable, so
X=0Y= %, Z = 0 is globally asymptotically stable. O

Yrz—vy? <

4 instability for 0 < v <1

The steady state X =0, Y = 1, Z =0 of (1) shows instability for 0 < v < 1.



Theorem 4.1. The steady state of (1), X =0,Y = %, Z =0, is unstable for
O<v<l.

Similarly to theorem 3.1, We use the method of linearizing the system of
ODEs to prove this theorem.

Lemma 4.1.1. Let p
== Az f(t,a)

where A is a real constant matriz with at least one characteristic root having
positive real part. Let f be real continuous for small |x| and t > 0, and

ft,x)=o(z])  (lz| = 0)
uniformly in t, t > 0. Then the identically zero solution is unstable.

Please refer to [1] for the proof of this lemma.

Proof of theorem 4.1. Let x = X,y =Y — 1 2= Z, then we will get (4).
1
— _1

Let A= —v , then

AL = A = [(A+0)” = A+ ).

Let g(A) = (A+v)? — %, then g(0) = v* — 5 < 0 for 0 < v < 1. Therefore,
g(z) has a positive root.
The characteristic roots of A are the two roots of g(z) and —v, so a charac-
teristic root of A is positive.
—yz
Let f(t,z,y,2) = | 2zz |, then similarly to theorem 3.1,
—zy

fta,y,2) = o(|(z,y,2)])  (I(z,9,2)] = 0)

uniformly in ¢, ¢ > 0.
By lemma 3.1.1, x =0, y = 0, z = 0 is unstable, so X =0, Y = %, Z =01is
unstable. O

5 The Other Two Steady States for 0 < v < 1

For (1), if we let &X = 49X = 4Z — ( then we will find another two steady

Y =v, Z=—,/=& 2 and X = \/1”2

=v, Z = \/T' Actually, they show stability.

= dt
statesfor 0 < v < 1: X =




Theorem 5.1. The steady states of (1), X =

1—v2 o _ 1—p2
> Y =v, 7 = -/

13”2 are asymptotically stable for 0 < v < 1.

and X = — 1’2"2,Y:V,Z:

Similarly to theorem 3.1, We use the method of linearizing the system of
ODE:s to prove this theorem.

Proof. Let x = X — s y=Y —v, z=27+ thenX*me/
Y=y+v,Z=2—
dr dX 1—12
—=—=-YZ—-vX=- —vz—
7t gt v ve + 9 Yy —Vvz—yz,

Y
%:Cil—t:1+2XZ—VY:—\/2(1—VZ)J:—Vy—l—\/Q(l—VQ)z—I—?xz,
d dz 1—v2
dfi:E:—XYfVZ:—fo QVyszf:cy.

Namely,
1—v2
P -V 3 -V x —yz

a\Y| = —/2(1 —v?) —v V2(1 = v?2) y |+ | 22z

z [1-12 z -
v — 1TV Y

1—v2

—v 5 -V
Let A= | —/2(1 —v?) —v V2(1 —v2) |, then
1—v2
g V2o g
A4v —1/ 1_2”2 v
IN—Al=[/20-12) Iv =201 —12)| = A+2) (XN +vr+2-207).
v 1_2”2 A4v

Let g(A) = A2+ vA+2-202 = (z+%)?+2— 212, then g(0) = 2— 202 > 0.
If 2 — 912 <0, then g(x) has two negative roots;

If 2 — ZUQ > 0, then g(z) has two imaginary roots with negative real part

1
V.

The characteristic roots of A are the two roots of g(z) and —2v, so their real
parts are all negative.
—yz
Let f(t,z,y,2) = | 2zz |, then similarly to theorem 3.1,
—zy

fta,y,2) = o(|(z,y,2)])  (I(z,9,2)] = 0)



uniformly in ¢, £ > 0.
_ _ _ . . _ 1—p2
By lemma 3.1.1, z = 0, y = 0, 2 = 0 is asymptotically stable, so X = /=5~

Y =v, Z=—y/152 is asymptotically stable.

Similarly, X = —4/ 1_2”2, Y=v,27Z=,/ 1_2”2 is also asymptotically stable.

O

We can use the plane Z = X to divide the whole space into two half-spaces
and a plane, then we will get some more stronger results.

Theorem 5.2. The steady state of (1), X = 0,Y = L, Z =0, is globally
asymptotically stable on the plane Z = X for 0 < v < 1. Namely, take any
point on the plane Z = X as the initial condition, the trajectory will tend to
X=0,Y=%, Z =0, ast — oo.

Similarly to theorem 3.3, we use lemma 3.3.1 LaSalle’s invariance principle
to prove this theorem.

Proof. A normal vector of the plane Z = X is (1,0,—1). The vector space of
the the original system (1) on the plane Z = X is (%X 94X 42y — (_y 7 —
vX,14+2X7Z —vY,—-XY —vZ) = (—XY —vX,1+2X? —vY, - XY —vX).
(1,0,—1) - (&¥, 4X 42y — (_ XY —pX) — (—XY —vX) =0,s0 (1,0,-1) L
(LLX 4y dl)
dt > dt > dt /)*
Hence the vector space of the the system (1) on the plane Z = X is parallel
to the plane Z = X itself, which means that any trajectory of the system (1)
whose initial value is a point on the plane Z = X keeps on that plane for any t.
We project the system (1) on the plane Z = X onto the XY -plane, then it

becomes a 2-dimensional system:

dX
— = —-XY —vX,
dt
dY
— =1+2X? Y.
a T v
Letx:X,y:Y—%,theanx,Y:y—i—%.
Therefore,
der dX 1 1
— = —=—XY —vX=- —-)—vr=—zy— —
- = R AL
dy dY 9 B 9 I, o
i dt_1+2X vY =1+ 2z V(y—i—y)—?x vy.

Let V(x,y) = 22% + y2, then

1) V(z,y) = 2(2%% + y%) =2(=2(v+ )22 — vy?) < 0 for all (z,y);
2) V(z,y) > 0 for all (z,y) # 0, and V(0,0) = 0;

3) V(z,y) = 00, as [|(z,y)|| = oo.

Moreover, {(z,y)|V'(z,y) = 0} = {0}.



By lemma 3.3.1, z = 0, y = 0 is globally asymptotically stable, so X = 0,
Y = L is globally asymptotically stable for the system (5).

Hence X =0, Y = %, Z =0, is globally asymptotically stable on the plane
Z = X for the system (1). O

I suppose that X = 1}”2, Y=v,7=—,/ 13”2 is globally asymptotically

. 2 2
stable in the half-space Z < X and X = f\/lT, Y =v, Z = w/12

is globally asymptotically stable in the half-space Z < X, and the following
lemma may be used to prove these two conjectures.

Lemma 5.2.1. (Local invariant set theorem) Consider an autonomous system
of the form i
x

with f continuous, and let V(x) be a scalar function with continuous first partial
derivatives. Assume that 1) for some l > 0, the region Q; defined by V(x) <1
is bounded;

2) V'(x) <0 for all z in Q.

Let R be the set of all points within §; where V'(x) =0, and M be the largest
invariant set in R. Then, every solution x(t) originating in € tends to M as
t — oo.

Please refer to [3] for the proof of this lemma.

6 Generalization

Let I, I3, I3 > 0 be the given moments of inertia. The equations of motion for
the rigid body with angular velocities (Q1,Q2,€3) € R? about its moment of
inertia axes are

dy
L—— = (I — I5)0Q
ldt (2 3)23a
dSdy

L—= = (I — ) Q
th (3 1)13a
dS23

Iz—= = (I — L) Q.
3dt (1 2)12

Without loss of generality, we assume I < I» < I3. We study a slightly more
general class of systems, which include the addition of linear friction and body
forcing.

d

Ilﬂ = CI,QQQg - VQl,
dQ

127; =00:Q3 — vl + 1, (6)
dQ

137; = 69192 - VQg,



Figure 1: Rigid body with booster rocket forcing rotation about I3 axis

where a + b+ ¢ =0 with a,c < 0 and b > 0.
For v > {/ac, there is exactly one root

(QL ng Qg) = (07 e O)'
For 0 < v < {/ac, there are exactly three real roots

* (O)* 1
(91392793) O ; 0

o 05,00 = (VP v Ve
"Jac —ab

_ 2 _ 2

(O5,05,05) = \/ﬁ v v \/OE v

e

Theorem 6.1. The steady state of (6), (QFf,Q5,Q%) = 7;70 , is globally
asymptotically stable for v > Vac.

Proof. Letszl,y:QQ—%,z:Qg,,thenﬁlzx, Qg:y—&-%,Qg:z.

Therefore,

dx d a

I =1 Q03 — vl = — —

T = Qligiiz — Vil Vx+yz+ayz,
d dQ

Igd—zt/ =1 dt2 b Q3 — Qs +1 = —vy + bxz, (7)
dz dS)3 c

Is— = 1. 01Qs — Q3 = —x — .

3 370 = {218y — V)3 Vm vz + cxy

Let V(z,y,2z) = —222 + 20292 — L322 then

10



1) V/(z,y,2) =2(-Dgde polaydy Isydey o gvy2 20024 1,2 25, <

2~ fael - 2oz - 27?)
If xzz > 0, then —\3;’7|xz\ — %a:z 2be2 =—2Lxz— 2a:z <0;
If 2z < 0, then f%|zz|—%xzf 2yt = 2” xzfzzzfl” 2 :2(\/7
%)x 2”y2 <2 \4/\/3:5 — é/lﬁ)xz =0.

Hence V'(x,y, 2) <0 for all (z,y, 2);

2) V(z,y,z) >0 for all (z,y,2) # 0, and V(0,0,0) = 0;

3) V(z,y,2) = o0, as ||(z,y, 2)|| = oo.

Let V'(z,y,z) = 0, then V'(z,y, z) 2(%2? —
2(— — 23z — 2y?) =0, so v/—c|z| = v/=alz|.

Ifa:zZO,thenx—y—Z—O,Ifxz<0and1/> Yac,thenr =y =2 =0; If
zz < 0and v = ac, then /—cx = —/—az, y = 0. By (7), Ig‘fl—t = —vy+brz =
brz=0,s0x =0o0r z=0. Whether x =0or 2=0,x =2 =0.

Hence {(z,y,2) | V'(z,y,2) = 0} = {0}.

By lemma 3.3.1, x = 0, y = 0, z = 0 is globally asymptotically stable, so
(5,93,9%) = (0,1,0) is globally asymptotically stable. O

73

2v, 2 v 2 2
= TY o - jar) =

1°0), is unstable for

s

Theorem 6.2. The steady state of (6), (25,95,Q3) = (0
0<v< {ac.

Proof. Let x = Qq, y = Q9 — =, 2 = (3, then
- v _a_ r ayz
d 11 l/]l bll
@\’ K v+ &
P c v 2 ey
vl T I
|4 a
n 28
Let A= - then
C v
125 I3
v v ac v
M-A =2+ )M+ =)= —=](A+ —).
A=Al = (A + )+ 1) = I+ )
Let g(A) = (A + F)(A+ £) — 277 then g(0) = ﬁ(u — 45) < 0 for
0 < v < {ac. Therefore, g(z) has a positive root.
The characteristic roots of A are the two roots of g(x) and —%, so a char-
acteristic root of A is positive.
ayz
o
Let f(t,z,y,2) = | % |, then lim ——f(t,2,9,2
( ’ ) (*gci ’ [(z,y,2)|—=0 |(1’ay72’)| ( Y )
T
’ asgn(yz)
ayz hy/ Smth+h
. 1 bIl . bsgn(zz)
= lim | = Ilm T, .2 .. | =0
(2,y,2)=0 /22 + 92 + 22 \ édy (w,y,2)—=0 BRI
Ts csgn(zy)

11

2
Jar/ L 4+ L z
34/ 32 +m2+mzy2



Therefore,

fta,y,2) = o(|(z,y,2)])  (I(z,9,2)] = 0)

uniformly in ¢, ¢ > 0.
By lemma 3.1.1, 2 = 0, y = 0, z = 0 is unstable, so (2}, Q3,Q%) = (0,1,0)

is unstable. O
I suppose that The steady states of (6), (Qf, Q3 ,Q5) = ( \/E;Cﬂ =, — ‘/f;)'jz )
and (Q7,Q5,Q3) a_cbc”2 —./ “_Cabyz ) are asymptotically stable for

0 <v < y/ac. We try to prove it similarly to theorem 5.1

Letxzﬁlfq/’lfigcﬂ,yzﬂgfﬁ,Z—Qng\/‘ﬁ , then Q) =
a?—&-\/r Q2—?/+\ﬁ,Q:Z_ @;f’z'

d dQ) vac — v?
I — m =1H— ! = a3 — v = —v + a(acy)y—\/al/z—i—ayz,
dt dt —
ds) —?) —1?)
12%212—2—1)9 Q3 —1vQy+1=— U vac—v :C—l/y—i—“ vac—v z—l—bxz
dz dQ) c [c(v/ac —v?
I3E = I3d—t3 =1y — Q3 = —\/;yx - T)y — vz + cxy.

Namely,
_v 1 Jalac=v?) —_r . ja ayz
d €T 11 11 —b Il C €T Il
Syl =] -x, /e v L\/ﬁ y |+ | 2z
dt e Io —a I 2 —c p CIwa
v /e 1 [e(ac—v?) v T
13\/j TV b I ?
v 1, /a(Vac—v?) v
= VT Ve
Let A = _ 1 M P 1 M then
Is —a Is I, —c ’
v C 1 «(F—V2) v
VT REER
v 1 a(y/ac—v?) v a
At TRV T Ve
Al |1 e e v )
i e At g nV e
v 1, [c(Vac—v?) v
s a I —b )‘+T3
/ 2
— )\3 = )\2 / e\ ( ac—v )
(Il + Ig + Ig) (I I + ) + 111515

I cannot find a root of |AI — AJ, so I cannot factorize it. However, if the
ODE system satisfies some symmetry, it is easy to find a root.

12



Theorem 6.3. If I; = I3, then the steady states of (6), (QF,QF,QF) =

vac—v? v Vac—v? — — — Vac—v? v Vvac—v?
( —bc ’Vac’ —ab ) and (Ql ’Q2 ’Q3 ) = (_ —bc "’ ac’ —ab )
are asymptotically stable for 0 < v < /ac.
Proof.
2 1 2y/ac 4v(y/ac — v?)
M — Al =X 4 (= + —)vA? A
| S L A T A
2v v 2(y/ac — v?)
= A+ )N+ a4+
( +11)[ T T ]

v 2(y/ac—v? v 2(\/ac—v? v2
Let g(A\) = A% + LA+ 7(\@2 ) = (A + E)2 + 7(‘@2 - i then
U.C—l/2
9(0) = 2T > 0.

2
If 2/ac—r) VZCI;V) - % < 0, then g(z) has two negative roots;
2
2
If 2ac—v) VI'IICI;”) - % > 0, then g(x) has two imaginary roots with negative real
2
part —57.
2

The characteristic roots of A are the two roots of g(x) and —2v, so their real

parts are all negative.
ayz
Iy

Let f(t,z,y,2) = bf—; , then similarly to theorem 6.1,

ft2,y,2) =o(|(z,y,2)))  (I(2,y,2)] = 0)

uniformly in ¢, ¢ > 0.
Bylemma 3.1.1, z = 0, y = 0, z = 0 is asymptotically stable, so (Qf, Q;, Q?{)

(y/ ac”, e~ Vacor®y is asymptotically stable.

Similarly, (Q7,95,Q5) = (—1/ ‘/E;VQ, =1/ \/E;)”z) is also asymptoti-

cally stable. O
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