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Abstract
The dynamics of a thin, periodic segment of string constrained to a plane are
captured by a closed plane curve in its arc length parametrization with a

‘no-stretch’ constraint and an equation of motion derived from a variational
principle. By the method of Lagrange multipliers, the constraint is enforced
by the variable tension throughout the string. Numerics show finite-time
blow up through a self-similar mechanism. We reproduce and add to the

existing body of numerical work by approximating the string with a discrete
chain and simulating dynamics with an explicit Euler method. Additionally,
basic properties of the tension, curvature, and vorticity of the string are
proven with techniques learned in a first semester undergraduate analysis

course and were found consistent with the simulation.

1



Contents

1 Introduction 3
1.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Tension, curvature, and vorticity . . . . . . . . . . . . . . . . 5

1.2.1 Tension equation . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Positivity of tension . . . . . . . . . . . . . . . . . . . 9
1.2.3 Convexity and concavity of tension . . . . . . . . . . . 10
1.2.4 Enstrophy . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Inflection points . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Self-similarity 13
2.1 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Optimizing β . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Fitting the loop . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Post-blow up evolution 19
3.1 Curvature behavior . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Energy behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Discussion 23

A Appendix 24
A.1 Derivation of equation of motion (2) . . . . . . . . . . . . . . 24
A.2 Conserved quantities . . . . . . . . . . . . . . . . . . . . . . . 25
A.3 Finite approximation and simulation . . . . . . . . . . . . . . 26

A.3.1 Derivation of chain equation of motion . . . . . . . . . 27
A.3.2 Chain tension equation derivation . . . . . . . . . . . . 29

A.4 The velocity constraint . . . . . . . . . . . . . . . . . . . . . . 31

2



1 Introduction

The initial value-boundary value problem of a thin inextensible string con-
strained to a plane has been studied before for its similarities to the Euler
equations governing incompressible fluids in work done by Thess et al. [7].
As stated there, both systems have a constraint enforcing a constant measure,
are derived from a variational principle, and are governed by non-linear partial
differential equations. Such similarities lead even to definitions of ‘vorticity’
on a string and comparisons of the finite-time curvature blow up to vortex
stretching in fluids by Thess et al. In the same spirit, we define ‘enstrophy’ on
the string as well.

This write-up studies the case for periodic boundary conditions. The case of
one free end and one fixed end corresponding to a whip have been studied
extensively before by Preston in a series of papers [4, 5, 1]. Therewithin,
Preston proved that the motion of the chain approximates the motion of the
whip (Section 7.1) and the existence and uniqueness of solutions for times [0, t)
(Theorem 7.5) in [4]. While we do not show these here directly, we rely on the
result to draw conclusions about the string from the chain simulation. We find
basic analytical results for the tension, curvature, and vorticity, which were
found to be consistent with the simulation despite it being an explicit first
order method.

Section 1.1 introduces the basic equations and quantities of the system. Section
1.2, specifically, defines curvature and vorticity for the string and discusses
some results about them with tension. Section 2 reviews the apparent self-
similar behavior driving the blow up seen in the numerics here and Thess et
al. [7]. Section 3 discusses possible post-blow up evolution and the results of
running the chain simulation past the blow up time. Section A is the appendix
containing the longer derivations, the details of the numerical scheme using
Preston’s chain approximation [4], and energy conservation.

t=0.00 t=0.75 t=1.50 t=2.25 t=2.90

Figure 1: To-scale evolution of unit length periodic chain at times t = 0, 0.75,
1.5, 2.25, and 2.9 with initial position x(s, 0) = cos(s)ex + sin(s)ey and initial
velocity ∂tx(s, 0) = −2/30 cos3(s)ex+2/30 sin3(s)ey by a numerical simulation.
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1.1 The system

The inextensible periodic string is described by the following system of equa-
tions.

Fix a time T > 0. Consider a map x : [0, 1) × [0, T ) → R2, whose image is
periodic x(s, t) = x(s+1, t) of length 1 with variable tension σ : [0, 1)×[0, T ) →
R, σ(s, t) = σ(s+ 1, t). The string is inextensible

∥∂sx(s, t)∥2 = 1, (1)

and evolves according to its equation of motion

∂ttx(s, t) = ∂s (σ(s, t)∂sx(s, t)) . (2)

∥·∥ denotes the standard norm on R2, and s is an arc length parametrization
of the curve. A derivation of (2) with the Lagrangian formalism of classical
mechanics is provided in the appendix A.

Expanding the equation of motion expresses the force in an orthogonal basis
where forces along the length of the string ∂sx correspond to nonuniformity of
the tension and forces perpendicular to the string ∂ssx correspond to the size
of the tension and curvature as later defined.

∂ttx(s, t) = ∂sσ(s, t)∂sx(s, t) + σ(s, t)∂ssx(s, t) (3)

Using the constraint (1) and the equation of motion (2), one can show that
the tension σ solves a linear ordinary differential equation.

−∂ssσ(s, t) + ∥∂ssx(s, t)∥2 σ(s, t) = ∥∂stx∥2 (4)

In the following section, we rewrite this equation with vorticity and curvature
to obtain results about the tension.
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1.2 Tension, curvature, and vorticity

Given that the string is arc length parametrized x(s, t), it is reasonable to
define curvature k : [0, 1)× [0, T ) → R2 as

k(s, t) := ∂sx
⊥(s, t) · ∂ssx(s, t), (5)

since ∂sx · ∂ssx = 0.

To study the evolution of the tangent vector ∂sx, we can define vorticity ω :
[0, 1)× [0, T ) → R2 as

ω(s, t) := ∂sx
⊥(s, t) · ∂stx(s, t). (6)

like in Thess et al. [7], since ∂sx · ∂stx = 0, similar to curvature.

Curvature and vorticity are also equivalently thought of as how much the angle
ϕ of the tangent vector ∂sx = (cos(ϕ), sin(ϕ)) changes in s and t, respectively.

k = ∂sϕ ω = ∂tϕ (7)

It then follows that ∂tk = ∂sω and that the total curvature in a C2 string is
constant, ∂t

∫ 1

0
kds = 0.

For the initial position of a closed regular curve the total curvature is a con-
stant 2πn where n is the rotation index defined by equation (31), since the
continuous tangent vector must start and end the string with the same angle
modulo 2π. In particular for a circle, the total curvature is 2π.

These geometric quantities determine the dynamics through the tension σ. We
see in Proposition 1 that σ solves an ordinary differential equation governed
by ω and k.
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Figure 2: Curvature k, vorticity ω, and tension σ throughout a unit length
chain at t = 0.0, 0.75, 1.50, 2.25, and 2.90 in light-to-dark order from the
chain simulation (M=1000 links). Curvature and vorticity plots are cut off
to show the detail at times farther from the blow up time. s = 0.25 and
s = 0.75 correspond to the top and bottom tips of the string in the simulation
respectively.
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1.2.1 Tension equation

Proposition 1. For any point s ∈ [0, 1) and time t ∈ [0, T ) on the string,

(−∂ss + [k(s, t)]2)σ(s, t) = [ω(s, t)]2 . (8)

Proof. Start with the equation of motion (2), and expand it.

∂ttx = ∂s(σ∂sx)

= ∂sσ∂sx+ σ∂ssx

Take ∂s and then the dot product with ∂sx.

∂sttx = ∂ssσ∂sx+ 2∂sσ∂ssx+ σ∂sssx

∂sx · ∂sttx = ∂sx · (∂ssσ∂sx+ 2∂sσ∂ssx+ σ∂sssx)

Using the constraint (1), one can simplify the dot products

∥∂sx∥2 = 1
∂s=⇒ ∂sx · ∂ssx = 0

∂s=⇒ ∂sx · ∂sssx = −∥∂ssx∥2

∥∂sx∥2 = 1
∂tt==⇒ ∂sx · ∂sttx = −∥∂stx∥2

Substituting in these relations recovers the tension equation

−∥∂stx∥2 = ∂ssσ − ∥∂ssx∥2 σ
−∂ssσ + ∥∂ssx∥2 σ = ∥∂stx∥2

By definition of curvature and vorticity as, we restate the equation

(−∂ss + k2)σ = ω2

and complete the derivation.

This equation and the following already known fact are vital for proving the
following results of this section.
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1.2.2 Positivity of tension

Theorem 1. Fix a time t ∈ [0, T ). If x(·, t) : [0, 1) → R2 and σ(·, t) : [0, 1) →
R are continuous and ∃s ∈ [0, 1), k(s, t) ̸= 0, then ∀s ∈ [0, 1)

σ(s, t) > 0. (9)

Proof. Here we show σ(s, t) ≥ 0. Let t ∈ R be fixed. By the extreme value
theorem,

∃s′ ∈ [0, 1) s.t. σ(s′, t) = min
s∈[0,1)

[σ(s, t)].

Now, the second derivative at s′ must be non-negative ∂ssσ(s
′, t) ≥ 0 because

σ(s′, t) is a minimum. It follows from (8) at s′ that

− ∂ssσ(s
′, t) + k(s′, t)2σ(s′, t) = ω(s′, t)2

⇒ − ∂ssσ(s
′, t) + k(s′, t)2σ(s′, t) ≥ 0 (10)

⇒ 0 ≤ ∂ssσ(s
′, t) ≤ k(s′, t)2σ(s′, t) (11)

Therefore, σ(s′, t) is non-negative. By the minimality of σ(s′, t), σ(s, t) is also

non-negative. Therefore, ∀t ∈ [0, T ) if σ(s, t) is continuous in s on [0, 1), then
σ(s, t) is non-negative ∀s ∈ [0, 1).

See Proposition A.2 in [5] for a proof of the existence of the Green’s function
G : [0, 1)× [0, 1)× [0, T ) → R that solves

− ∂ssG(s, s′, t) + k(s, t)2G(s, s′) = δ(s− s′)

G(0, s′, t) = G(1, s′, t), ∂sG(0, s′, t) = ∂sG(1, s′, t).

By construction, it follows that

σ(s, t) =

∫ 1

0

G(s, s′, t)ω(s, t)2ds′.

Proposition A.3 then gives a positive lower bound on it if the curvature is not
identically 0, from which σ(s) > 0 immediately follows.

In [6] and [4] respectively, Shnirelman and Preston credit Victor Yudovich for
showing but not publishing early results, such as this one on the positivity of
tension.
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1.2.3 Convexity and concavity of tension

Proposition 2. Fix t ∈ [0, T ) and s ∈ [0, 1). If ω(s, t) = 0, then ∂ssσ(s, t) ≥
0. If k(s, t) = 0, then ∂ssσ(s, t) ≤ 0. Restated, the tension is convex at
vorticity zeros and concave at curvature zeros.

Proof. Recall the tension equation (8), and let t0 ∈ [0, T ), s0 ∈ [0, 1] such that
ω(s0, t0) = 0.

−∂ssσ(s0, t0) + k(s0, t0)
2σ(s0, t0) = ω(s0, t0)

2 = 0

By the non-negativity of the tension in result 1,

∂ssσ(s0, t0) = k(s0, t0)
2σ(s0, t0) ≥ 0 (12)

Therefore, σ is convex in s around s0 when ω(s0, t0) = 0.

Let t1 ∈ [0, T ) and s1 ∈ [0, 1) such that k(s1, t1) = 0.

−∂ssσ(s1, t1) + k(s1, t1)
2σ(s1, t1) = ω(s1, t1)

2 (13)

∂ssσ(s1, t1) = −ω(s1, t1)
2 ≤ 0 (14)

Therefore, σ is concave in s around s1 when k(s1, t1) = 0.

From this, we can say that vorticity zeros ω = 0 correspond to convex regions
of the tension σ, and inflection points k = |k| = ∥∂ssx∥ = 0 in the string
correspond to concave regions of the tension σ.

We can also integrate in s between points a, b ∈ [0, 1) where ∂sσ(b, t) −
∂sσ(a, t) = 0 for some fixed t > 0.

1.2.4 Enstrophy

Let E([a, b], t) :=
∫ b

a
|ω(s, t)|2 ds be called the enstrophy in [a, b] ⊂ S1 at time

t > 0.
Proposition 3. Fix t ∈ [0, T ). E([0, 1), t) =

∫ 1

0
k(s, t)2σ(s, t)ds.

Proof. The proof follows immediately from the fundamental theorem of calcu-
lus and periodicity of the tension and its first derivative ∂sσ.∫ 1

0

−∂ssσ(s, t) + k(s, t)2σ(s, t)ds =

∫ 1

0

ω(s, t)2ds (15)

⇒ E([0, 1), t) =
∫ 1

0

k(s, t)2σ(s, t)ds (16)
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The enstrophy can thus be interpreted as the weighted L2-norm of the curva-
ture by the tension since the tension is positive by Proposition 1.
Proposition 4. Fix t ∈ [0, T ). If a, b ∈ S1 are locations of tension extrema

∂sσ(a) = ∂sσ(b) = 0, then E([a, b], t) =
∫ b

a
k(s, t)2σ(s, t)ds.

Proof. The proof follows from the fundamental theorem of calculus.

1.3 Inflection points

The classification of the singularity comes down to it being either a corner or
a cusp. The distinction comes down to if the tangent vectors approaching the
point from either side are merely discontinuous or entirely antiparallel of each
other.

One way for a corner to form is by two inflection points approaching each
other in the limit with discontinuous tangent vectors. If a pair of inflection
points s−, s+ where ∂sk(s−, t) < 0 < ∂sk(s−, t) meet in the limit, they can
do so either ‘peacefully’ like when a bend in a curve is pulled out or collide
‘violently’ like when a knot is cinched tightly. While more complex behaviors
may be possible, these two simple cases can be illustrative.

We can describe the motion of the inflection points s+ and s− using the implicit
function theorem [3].
Proposition 5. Suppose x ∈ C3, and (s0, t0) ∈ [0, 1) × [0, T ) such that
k(s0, t0) = 0, ∂sk(s0, t0) ̸= 0. Then ∃I ⊂ [0, T ) open, t0 ∈ I, ∃S0 : I →
[0, 1), S0 ∈ C1 such that S0(t0) = s0 and ∀t ∈ I

k(S0(t), t) = 0, ∂sk(S0(t), t) ̸= 0. (17)

Furthermore,

d

dt
S0(t) = −∂tk(S0(t), t)

∂sk(S0(t), t)
. (18)

Proof. Recall that curvature is given by the map k : [0, 1)×[0, T ) → R, (s, t) 7→
∂sx

⊥(s, t) · ∂ssx(s, t). By hypothesis x ∈ C3, and this implies that k ∈ C1.
The given point (s0, t0) meets the criteria for the implicit function theorem

k(s0, t0) = 0, ∂sk(s0, t0) ̸= 0. (19)

This gives us the first part of the proposition that parametrizes a given in-
flection point. The second part of the proposition follows from theorem 9.1 in
[3].
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These observations are all geometric. The question remains if the dynamics,
the behavior of σ and the equation of motion (2), yield such a case where k
grows between the inflection points.

In the numerics that follow, we see that such a case may be possible when the
string passes through itself to create self-intersecting loops.
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2 Self-similarity

In Figure 4 from the simulation, a loop structure forms in the string after self-
intersection and appears to shrink uniformly in the plane up to some critical
time. In Thess et al., this self-similar behavior was described, and we reproduce
it between Sections 2.1 and 2.2. Furthermore, we propose a certain profile for
the self-similar loop and analyze the profile in Section 2.3.

t=1.50 t=1.85 t=2.20 t=2.55 t=2.80

Figure 4: Rescaled view of the evolution of the loop between the blow up
point and the self-intersection point. Each successive image is scaled down
from the last until the resolution becomes coarse just before the blow up.

In Thess et al., the self-similar function is the angle of the tangent vector, ϕ.

Let T > 0 be the blow up time, τ = T − t the time until blow up, and
∂sx(s, t) = cos(ϕ(s, t))ex + sin(ϕ(s, t))ey the tangent vector. For all s, t, this
tangent vector obeys the no stretch constraint (1).

ϕ(s, t) = ταf
( s

τβ

)
(20)

σ(s, t) = τ γg
( s

τβ

)
(21)

Thess et al. showed that by applying equations (2) and (8), one finds that
α = 0 and γ = 2β − 2 in order for the evolution to be self-similar.

Recall that by definition, vorticity and curvature are ω = ∂tϕ and k = ∂sϕ.
From this, one should expect to find the following self-similar functions of
ξ = sτ−β around the eventual singular point s = 0 by compensating with
some power of τ :

τβk(s, t) = f ′(ξ) (22)

τω(s, t) = βξf ′(ξ) (23)

τ 2−2βσ(s, t) = g(ξ) (24)
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2.1 Numerics

Thess et al. uses a numerical shooting method to show β can be near 3/2. This
justifies scanning around β = 3/2 to calculate the compensated quantities from
equations (23), (22), and (24). We found that β = 1.581 optimized vorticity
and β = 1.529 optimized tension for orthogonal distance to their fit lines.
No β ∈ [1, 2] optimized curvature. However, this is entirely unproblematic
because the range of residuals between different β’s is very small, only 0.0064.
See the Figure 6 in Section 2.2 for more details about the optimized β’s. The
plots for β = 1.500 are pictured below.
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Figure 5: Log-log plots of compensated curvature τβk (left), compensated
vorticity τω (middle), and compensated tension τ 2−2βσ (right) against the self-
similar variable ξ = sτ−β, where β = 3/2, from the numerical simulation. The
data shown is only for five links left and right of the blow up link (M = 1000
links) for times t = 2.89 up until the blow up time T = 2.90815. The fitted
red, dashed lines have slopes of −1.038 ± 0.015 (curvature), −0.659 ± 0.009
(vorticity), and 0.688± 0.009 (tension) on the fitted region.

The fact that the quantities came out as lines when plotted against |ξ| on
the loglog plot supports the idea that the compensated versions of curvature,
vorticity, and tension are self-similar quantities for a particular regime of ξ.
Additionally, the slopes of the lines of best fit suggest their scaling to leading
order up to multiplication by a constant.
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2.2 Optimizing β

When justifying the estimate of β, we made several plots of the quantities
on the region of 3 · 10−1 ≤ ξ ≤ 4 · 104 where they appeared self-similar and
measured the orthogonal distance of each point from the fit line. To get the
‘normalized residual,’ we then divided by the number of points in the region
in order for this measure to not depend on the number of points in the region.

This worked for vorticity and tension where there are clear minima in the
region, but curvature had no such obvious minimum.
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Figure 6: Normalized residuals of curvature, vorticity, and tension from the
line of fit on the self-similar region (ξ ∈ [3 · 10−1, 4 · 104]) in a scan through
β’s spaced 0.001 apart. The dots indicate the minimum values for quantities.
The minima are 2.000 (curvature), 1.581 (vorticity), and 1.529 (tension).

Despite the curvature not minimizing on the interior of this region of β’s, the
range of the curvature residuals is 0.0063, when their mean is an order of
magnitude larger at 0.0336± 0.0020.
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2.3 Fitting the loop

On first glance, the loops presented in Figure 4 appear to have the same
uniformly scaled profile over time. Consequently, we introduce the profile
(X, Y ) rescaled by some function S(τ).

(X, Y ) = S(τ)(x, y) τ = T − t (25)

The profile seen in Figure 4 resembles the algebraic curve X2+Y (Y −µ)2 = 0,
which can be parametrized as

(X(ξ), Y (ξ)) = (ξ3 + µξ,−ξ2) (26)

for some µ < 0.

t=2.41, τ=0.50

Figure 7: Fitted curve (red, dashed) of (26) plotted against the unit length
chain (black, solid) at t = 2.41 or τ = 0.50.
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With the profile alone, we could study the tangential angle ϕ and curvature
k. However with the numerical evidence for the self-similar variable ξ = sτ−β,
we can also study the vorticity ω.

ϕ = arctan

(
y′

x′

)
= arctan

( −2ξ

3ξ2 + µ

)
(27)

k =
x′y′′ − y′x′′

((x′)2 + (y′)2)3/2
=

2

S(τ)

−3ξ2 + µ

(9ξ4 + (6µ+ 4)ξ2 + µ2)3/2
(28)

ω = βS(τ)τ−1ξk =
2β

τ

−3ξ3 + µξ

(9ξ4 + (6µ+ 4)ξ2 + µ2)3/2
(29)

The maximum curvature occurs at ξ = 0.

kmax =
2

S(τ)µ2
. (30)

Comparing the curvature scaling expected from equation (22) and above, we
conclude that S(τ) = Cτβ for some constant C.

Using the data from the simulation, we fit for C and µ.
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Figure 8: Fits (black, dashed) of C (top) and µ (middle) to a sample over
time of the curve where β = 1.5. To read the C and µ graphs forward in time,
read from right to left. Below are the rescaled views of the loop (black, solid)
and the fit (red, dashed) at a τ = 0.1, 0.5, 0.9, and 1.3.

From the fits, C = −0.08 ± 0.001 and µ = −0.671 ± 0.0002. If µ → 0 as
τ → 0, then that would have indicated a cusp. However µ ↛ 0 still allows for
a corner instead.

Using the tension equation (8), one could go further and attempt to solve for
the tension, but the differential equation becomes quite hairy.
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3 Post-blow up evolution

In the simulation, the blow up does not occur because the chain is a system
of ordinary differential equations, and equations (35), (36), and (37) depend
on finite differences instead of derivatives.

t=2.90 t=3.75 t=4.50 t=5.25 t=6.00

Figure 9: Evolution of the chain after the blow up from the numerical simu-
lation (M = 1000 links)

We notice that there appear to be ‘shockwaves’ that propagate out from the
singular points. When comparing the M = 1000 link simulation with the
M = 200 link simulation, the corners become ‘sharper,’ suggesting that these
jump discontinuities in the tangent vector or weak shocks may be singularities
in the continuous limit.

t=2.90 t=3.75 t=4.50 t=5.25 t=6.00

Figure 10: Evolution of the chain after the blow up from the numerical
simulation (M = 200 links)

The consistency of the numerical method post-blow up suggests that unique
continuation after the blow up time is possible and that it may contain prop-
agating singularities. This possibility of dissipative generalized solutions was
discussed by Shnirelman in [6].
Conjecture 1. There exist solutions to the Cauchy problem of equation (2)
in the weak sense where the constraint (1) holds almost everywhere.
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3.1 Curvature behavior

Based on the definition of curvature in Section 1.2, we expect the curvature
to stay constant through evolution up to the singular time.

This is similar in spirit to the Whitney-Graustein theorem and the notion of
a regular homotopy from differential geometry1.

Let X be the space of regular curves in R2. Two regular curves C0, C1 are
regularly homotopic if and only if there exists a continuous map h : [0, 1) → X
such that h(0) = C0, h(1) = C1, and ∀t ∈ [0, 1), h(t) ∈ X.

The Whitney-Graustein theorem states that two closed, regular curves are
regularly homtopic if and only if they have the same rotation index [8], where
the rotation index n of a closed regular curve x ∈ X is defined as

2πn =

∫ 1

0

k(s)ds (31)

as in [2] on page 38. The result is similar to knowing that the curvature for
our periodic string constant. However, our string is allowed to be as irregular
as C2 instead of smooth but is restricted by the dynamics given by (2) instead
of just any homotopy with non-vanishing first derivative.

Another differential geometry theorem is Fenchel’s theorem which states that
a closed regular curve has total absolute curvature greater than or equal to 2π

2π ≤
∫ 1

0

|k(s)| ds

with equality only for convex curves [2]. This means that we expect the curve
to have constant total absolute curvature while it is convex, but to have larger
total absolute curvature afterwards.

1Definitions of differentiable (smooth), regular, closed, and convex plane curves can be
found in a standard differential geometry textbook such as do Carmo’s book [2] on pages 2,
6, 32, and 39 respectively.

20



0 2 4 6

Time t

-2π

-1π

0π

1π

2π

Total Curvature

0 2 4 6

Time t

2π

4π

6π

8π

10π

12π

14π

16π

18π

20π

22π

24π

26π

28π

30π
Total Absolute Curvature

Figure 11: The left plot shows the total absolute curvature against time, and
the right plot shows the total curvature against time. The first vertical line
on both is when the string stops being convex, and the second vertical line is
the blow up time.

In the numerical simulation of the chain, we observe the expected behavior
from Fenchel’s and the Whitney-Graustein theorems. If the curve after the
blow up time was regular, we would expect it to have a rotation index n = −1
and have a constant −2π total signed curvature as observed. However, the
curve after the blow up is suspected to be some kind of weak solution with a
discontinuous first derivative.
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3.2 Energy behavior

We are interested in if energy is conserved after the blow up. In Section A.2, we
show that energy is conserved for smooth solutions. Checking this numerically,
we see that energy conservation holds in the simulation up until the blow up
time. For a chain with M links of size ∆s, the discrete energy is defined as

E(t) =
1

2

M∑
i=1

∆s ∥∂txi+1∥2 (32)
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Figure 12: Plot of the energy over time in the numerical simulation for unit
length chain with M = 200 and M = 1000 links.

Some time after the blow up, energy seems to grow This is unphysical. In
fact, it has been commented that, under some generalized notion, solutions
may be able to lose energy [6]. This means either energy is not conserved after
blow up or that the simulation is inaccurate at this point. To get a better
idea of either, a proof or counterexample would need to be provided for energy
conservation of weak solutions or more simulations with progressively higher
resolutions would need to be performed.
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4 Discussion

In this write-up, most of the numerical results from Thess et al. about the
inextensible periodic string have been reproduced, and we offer a classification
of the singularity as a corner.

What remains to be shown is deeper analysis of the tension σ. The motion of
inflection points and the self-similar analysis of the profile X2+Y (Y −µ)2 = 0
suggests that the singularity is a corner instead of a cusp.

While we have analyzed inflection points of the curve, we haven’t studied
zeros of vorticity and the importance of ∂sω at said zeros. We note that in the
simualtion, at the singular points ω = 0 and ∂sω > 0, while at the ‘waist’ of
the curve ω = 0 as well, but ∂sω < 0. The periodicity of ω and conservation
of total curvature encapsulates the information that more bending in one spot
on the string means bending less somewhere else.

Finally, we note that the energy growth after the blow up is unexpected.
Under the analogy that the string is similar to fluids, one may expect to see
a decrease in the energy, but instead it increases. Explicit numerical schemes
exhibit this instability on time scales too small for the chosen step size, and
the chosen Euler method is only first order. Qualitatively, the curvature and
vorticity are wildly discontinuous on the curve behind the propagating ‘near-
’singularities after the blow up. This suggests that the spatial resolution is
also too limited. This is the only major inconsistency between the simulation
and the theorems proven, and it is rather miraculous in fact that such good
consistency between the numerics and analytics is otherwise observed for such
low-resolution, low-order numerics. An implicit numerical method may remove
this error at the cost of more expensive calculations and inaccurate energy
dissipation as opposed to growth.

The periodic boundary condition case for the thin, inextensible string is an ex-
citing problem for future work at the advanced undergraduate/early graduate
level. Future work might be to prove local existence for the periodic bound-
ary condition as Preston had done for the two free ends and whip boundary
conditions in [4].
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A Appendix

A.1 Derivation of equation of motion (2)

The equation of motion (2) can be derived using the Lagrangian formalism of
mechanics. The constrained Lagrangian density is given below.

L =
1

2
ρ(s) ∥∂tx(s, t)∥2 ∥∂sx(s, t)∥ = 1

By the method of Lagrange multipliers, the constrained Lagrangian density
can be transformed into an unconstrained Lagrangian density with a Lagrange
multiplier 1

2
σ(s, t).

L =
1

2
ρ(s)∂tx(s, t)

2 − 1

2
σ(s, t)(1− ∥∂sx∥2)

Under the principle of least action, we take the variational derivative of the
action S[x(s, t)] =

∫ 1

0

∫ t2
t1

L dtds and set it to 0 to obtain a stationary point.

S[x(s, t)] =

∫ 1

0

∫ t2

t1

(
1

2
ρ(s) ∥∂tx(s, t)∥2 −

1

2
σ(s, t)(1− ∥∂sx(s, t)∥2)

)
dtds

δS[x(s, t)] = 0 =

∫ 1

0

∫ t2

t1

(⟨ρ(s)∂tx(s, t), δ∂tx(s, t)⟩ − σ(s, t)⟨∂sx(s, t), δ∂sx(s, t)⟩) dtds

Apply integration by parts to shift the derivatives off of δ∂tx and δ∂sx.

0 =

∫ 1

0

∫ t2

t1

⟨ρ(s)∂ttx(s, t)− ∂s(σ(s, t)∂sx(s, t)), δx(s, t)⟩dtds

−
∫ 1

0

⟨ρ(s)∂tx(s, t), δx(s, t)⟩|t2t1 ds−
∫ t2

t1

⟨∂sx(s, t), δx(s, t)⟩|L0 dt

0 =

∫ 1

0

∫ t2

t1

⟨ρ(s)∂ttx(s, t)− ∂s(σ(s, t)∂sx(s, t)), δx(s, t)⟩dtds

By the calculus of variations, the integrand is zero ∀s ∈ [0, 1) and ∀t where
∂tx exists. From this, the equation of motion is derived.

0 = ρ(s)∂ttx(s, t)− ∂s(σ(s, t)∂sx(s, t))

ρ(s)∂ttx(s, t) = ∂s(σ(s, t)∂sx(s, t))
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In this, we only consider the uniform string, ρ(s) = 1.

∂ttx(s, t) = ∂s(σ(s, t)∂sx(s, t))

A.2 Conserved quantities

Several quantities are conserved for smooth solutions of the non-uniform, thin,
inextensible string. These correspond to continuous symmetries in the string.
The mass density is ρ(s) > 0. The equation of motion reduces to (2) when the
linear mass density is uniform ρ(s) = 1.

ρ(s)∂ttx(s, t) = ∂s(σ(s, t)∂sx(s, t)) (33)

The conserved quantities for smooth solutions are

∂t

∫ 1

0

1

2
ρ(s)[∂tx(s, t)]

2ds = 0 (Energy)

∂t

∫ 1

0

ρ(s)∂tx(s, t)ds = 0 (Linear momentum)

∂t

∫ 1

0

ρ(s)∂tx(s, t) · x⊥(s, t)ds = 0 (Angular momentum)

(34)

Additionally, in the uniform string ρ(s) = 1, circulation is also conserved.

∂t

∫ 1

0

∂tx(s, t) · ∂sx(s, t)ds = 0 (Circulation)

The circulation is only conserved for the uniform string because the continuous
symmetry in s is broken if the string is not uniform ρ(s) = 1 i.e. an impulse
on a heavier part of a string has a different effect than an impulse on a lighter
section.

Proof. Functional dependencies are removed for clarity. ρ is not time-dependent.
For energy,

∂t

∫ 1

0

1

2
ρ[∂tx]

2ds =

∫ 1

0

ρ∂ttx · ∂txds∫ 1

0

∂tx · ∂s(σ∂sx)ds = −
∫ 1

0

∂stx · σ∂sxds = 0
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For linear momentum,

∂t

∫ 1

0

ρ∂txds =

∫ 1

0

∂s(σ∂sx)ds = 0

For angular momentum,

∂t

∫ 1

0

ρ(∂tx · x⊥)ds =

∫ 1

0

∂s(σ∂sx) · x⊥ds =

∫ 1

0

∂s(σ∂sx · x⊥)ds = 0

For circulation in the uniform case,

∂t

∫ 1

0

∂tx · ∂sxds =
∫ 1

0

∂ttx · ∂sx+ ∂tx · ∂stxds

=

∫ 1

0

∂sσds+

∫ 1

0

1

2
∂s ∥∂tx∥2 ds = 0

Note that this does not say anything about conservation with shocks like those
seen in Section 3 or through the singularity in the last panel of Figure 1.

A.3 Finite approximation and simulation

The numerical simulation is based off the finite approximation of the string
by a discrete chain. In Preston’s paper [4], he proves that the motion of the
chain approaches the string in the discrete to continuous limit in order to prove
uniqueness and existence for solutions for the string in short times.

Here, we use the chain equations for simulation as, Preston did in [1]. This
turns the tension equation into a matrix equation (37).

For the rest of the simulation details, time-evolution is discretized by a simple
Euler method, and the choice of initial conditions is similar to those in Thess
et al. [7]. The difference in initial conditions is discussed in Section A.4. The
initial conditions used are from the caption of Figure 1.

x(s, 0) = cos(s)ex + sin(s)ey

∂tx(s, 0) = −2/30 cos3(s)ex + 2/30 sin3(s)ey

The combination of discrete time steps and Preston’s chain scheme make it so
the blow up time and configuration are effectively “skipped” over. While its
accuracy compared to the string is questionable, post-“blow up” evolution is
possible resulting in what appear to be shocks.

26



A.3.1 Derivation of chain equation of motion

Consider a periodic chain of length 1 constructed out of n joints (x1, . . . , xn)
connected by uniform, rigid link of length ∆s = 1

n
. As a periodic chain,

the indices are periodic with period n. For clarity let q = (x1, . . . , xn) and
∂tq = (∂tx1, . . . , ∂txn) when expressing the degrees of freedom of the system.

The Lagrangian L of the system is a function of the position and velocity.

L(q, ∂tq) =
1

2

n∑
i=1

|∂txi(t)|2

∀i ∈ Z |xi+1 − xi| = ∆s

∀i ∈ Z xi(t) = xi+n(t)

We add the discretized non-stretch constraint to form the constrained La-
grangian. Let the σi(t) be the i-th Lagrange multiplier for the i-th constraint.

L(q, ∂tq) =
n∑

i=1

(
1

2
|∂txi(t)|2 −

1

2
σi(t)

(
1−

∥∥∥∥xi+1(t)− xi(t)

∆s

∥∥∥∥2
))

This defines the action S between times t1 and t2 as

S[q] =

∫ t2

t1

n∑
i=1

(
1

2
∥∂txi(t)∥2 −

1

2
σi(t)

(
1−

∥∥∥∥xi+1(t)− xi(t)

∆s

∥∥∥∥2
))

dt

To find a stationary point of the action, take the variational derivative and set
it equal to 0.

δS[q] = 0 =

∫ t2

t1

n∑
i=1

(
∂txi(t) · δ∂txi(t) + σi(t)

(
xi+1(t)− xi(t)

(∆s)2
· δ(xi+1(t)− xi(t))

))
dt

Apply integration by parts to shift the derivative off of δ∂tx and expand dot
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products into separate sums.

0 =

∫ t2

t1

(
n∑

i=1

(
∂ttxi(t)−

σi(t)

(∆s)2
(xi+1(t)− xi(t)) · δxi(t)

)

+
n∑

i=1

(
σi(t)

(∆s)2
(xi+1(t)− xi(t)) · δxi+1(t)

))
dt

−
n∑

i=1

(∂txi(t) · δxi(t))|t2t1

=

∫ t2

t1

(
n∑

i=1

(
∂ttxi(t)−

σi(t)

(∆s)2
(xi+1(t)− xi(t)) · δxi(t)

)

+
n∑

i=1

(
σi(t)

(∆s)2
(xi+1(t)− xi(t)) · δxi+1(t)

))
dt

Shift the indices of the second summation and combine the two summations.

0 =

∫ t2

t1

(
n∑

i=1

(
∂ttxi(t)−

σi(t)

(∆s)2
(xi+1(t)− xi(t))

)
· δxi(t)

+
n∑

i=1

(
σi−1(t)

(∆s)2
(xi(t)− xi−1(t))

)
· δxi(t)

)
dt

=

∫ t2

t1

n∑
i=1

(
∂ttxi(t)−

(
σi(t)

(∆s)2
(xi+1(t)− xi(t))−

σi−1(t)

(∆s)2
(xi(t)− xi−1(t))

))
· δxi(t)dt

=
n∑

i=1

∫ t2

t1

(
∂ttxi(t)−

(
σi(t)

(∆s)2
(xi+1(t)− xi(t))−

σi−1(t)

(∆s)2
(xi(t)− xi−1(t))

))
· δxi(t)dt

By expanding the inner product and applying the fundamental lemma of the
calculus of variations term-wise, the summation in the integrand of each term
is 0. This immediately yields the desired equation of motion for each link.

0 = ∂ttxi(t)−
(

σi(t)

(∆s)2
(xi+1(t)− xi(t))−

σi−1(t)

(∆s)2
(xi(t)− xi−1(t))

)
∂ttxi(t) =

σi(t)

∆s

(
xi+1(t)− xi(t)

∆s

)
− σi−1(t)

∆s

(
xi(t)− xi−1(t)

∆s

)
(35)
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In this suggestive form, it becomes clear that as the spacing of the joints
∆s → 0 (equivalently number of joints n → ∞) that the discrete system of
the chain approaches that of the string if xi(t) → x(s, t) and σi(t) → σ(s, t).
However, this does not prove convergence of the motion, which is done in [4].

A.3.2 Chain tension equation derivation

The tension equation for the chain is also derived in a similar procedure as the
tension equation of the string. Due to the lengthy nature of these expressions,
the time-dependence of the tension σi, position xi, and velocities ∂txi are
suppressed.

Subtract the equations of motion between the (i+1)-st and the i-th equations
of motion.

∂ttxi+1 − ∂ttxi =
σi+1

∆s

(
xi+2 − xi+1

∆s

)
− σi

∆s

(
xi+1 − xi

∆s

)
− σi

∆s

(
xi+1 − xi

∆s

)
+

σi−1

∆s

(
xi − xi−1

∆s

)
=
σi+1

∆s

(
xi+2 − xi+1

∆s

)
− 2

σi

∆s

(
xi+1 − xi

∆s

)
+

σi−1

∆s

(
xi − xi−1

∆s

)

Take the dot product against the difference between the position of (i+ 1)-st
and i-th joint.

(∂ttxi+1 − ∂ttxi) · (xi+1 − xi) =σi+1

(
xi+2 − xi+1

∆s

)
·
(
xi+1 − xi

∆s

)
− 2σi

+ σi−1

(
xi − xi−1

∆s

)
·
(
xi+1 − xi

∆s

)

Analogously to the continuous string, it can be shown through the product
rule that

(∂ttxi+1 − ∂ttxi) · (xi+1 − xi) = −|∂txi+1 − ∂txi|2 (36)

Substituting in this relation (36) yields the final form of the chain tension
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equation.

−|∂txi+1 − ∂txi|2 = σi+1

(
xi+2 − xi+1

∆s

)
·
(
xi+1 − xi

∆s

)
− 2σi

+σi−1

(
xi − xi−1

∆s

)
·
(
xi+1 − xi

∆s

) (37)

Notice that the right side is a linear combination of σi’s. This equation is
easily rewritten as a real matrix equation of the form Aσ = b. Here, where
A is a diagonally-dominant tri-diagonal coefficient matrix with two additional
terms in the upper right and bottom left corners. σ here is a column vector
containing the σi’s. b is a vector containing the LHS of the boxed final form
of the chain tension equation.
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A.4 The velocity constraint

In the chain simulation, the initial conditions must meet the chain equivalent
of the velocity constraint.

∂sx · ∂stx = 0 (xi+1 − xi) · (∂txi+1 − ∂txi) = 0 (38)

or else the chain will stretch over time. I suspect that this has to do with
its inclusion in the tension equation (8) (or (37)) derivation, but nonetheless,
we are limited to simulating systems with compatible initial velocities. This
seems to not be a limitation for Thess et al. [7] or Preston [1] who used the
following initial conditions

x(s, 0) = (cos(s), sin(s)) ∂tx(s, 0) = (−c cos(s), c sin(s)) (39)

up to a constant c scaling the initial velocities.

∂sx · ∂stx = (cos(s), sin(s)) · (−c cos(s), c sin(s)) (40)

= c(sin2(s)− cos2(s)) (41)

One can see above that the velocity constraint is not met.

If we assume that the initial conditions are smooth, then we can write them
as a Fourier series

x(s, 0) =
∑
n∈Z

xne
i2πns ∂tx(s, 0) =

∑
n

ẋne
i2πns

enforced to be real-valued

∀n ∈ Z, xn = x−n, ẋn = ẋ−n

and take their dot product.

By doing this, multiplying both sides by e−i2πk, and integrating, we find

0 = ∂sx · ∂stx =
∑

n,m∈Z

nm(xn · ẋm)e
i2π(n+m)s

⇒ ∀k ∈ Z, 0 =
∑
n∈Z

n(k − n)(xn · ẋk−n)
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