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ABSTRACT. We review two versions of Arnold’s variational principle for stationary states of the Euler equation
(extremizing the energy functional either over the orbit in the group of area preserving diffeomorphisms of a
given vorticity ω0, or of a given streamfunction ψ0 [1, 2]). The former is relevant for the dynamics of the Euler
equation, since the Euler vector field is tangent to isovorticity leaves and so energy maximizers/minimizers
are Lyapunov stable. The latter is relevant to particle dynamics since all other fields on the isostream leaf have
Lagrangian dynamics conjugate to those generated by ψ0 as the Hamiltonian. We also discuss their implications
for the local structure of the manifold of steady states, by analogy with a theorem in finite dimensions.

Recall the finite dimensional result (Arnold–Khesin [2, Theorem 3.3]) locally characterizing fixed points

Theorem 1. Let b : Rn → Rn and consider the ODE

Ẋ(t) = b(X(t)). (1)

Suppose there are first integrals f : Rn → Rk, e.g. the vector field b is tangent to the surfaces

Sh := {x ∈ Rn : f(x) = h ∈ Rk}. (2)

Suppose also that the system possesses an additional first integral E : Rd → R, i.e.

b · ∇E = 0. (3)

Let x0 ∈ Rd be such that
• there exists a regular point1 h0 ∈ Rk of f such that x0 ∈ Sh0 , i.e. h0 is so that the Jacobian matrix
Jf := ∇f : ∇fT : Rn → Rk×k is non-singular (has rank k), i.e.

|Jf | := [det Jf ]
1/2 ̸= 0 for all x ∈ Sh0 . (4)

• x0 is a critical point of E restricted to the leaf Sh0
• the second differential of E restricted to the leaf is a nondegenerate quadratic form

Then the following hold true
• x0 is a fixed point b(x0) = 0,
• x0 is Lyapunov stable
• there exists ε so that for all h ∈ Rk such that |h − h0| ≤ ε the leaf Sh contains a fixed point of b

which is a conditional nondegenerate maximum or minimum (same as x0) of E.
As such, neighboring fixed points are stable and form a locally smooth k-dimensional submanifold.

PROOF OF THEOREM 1. Recall that for any function g : Rn → R and (n − k)–dimensional submanifold
Sh, we may express its gradient in terms of

∇g = Px∇g +P⊥
x∇g, where P⊥

x∇g =
k∑
i=1

λi∇fi, (5)

where Px is the orthogonal projection onto TxSh and λ = λ(x) : Rn → Rk are defined by

λ(x; g) := J−1
f (x)(∇f · ∇g)(x). (6)

Let g̃ = g|Sh0
be the restriction of g to Sh. For x ∈ Sh, the surface gradient ∇̃ := Px∇ on Sh of g̃ is

∇̃g̃ = (Px∇g)|Sh
(7)

1By Sard’s theorem, provided f ∈ Cn−k+1, the set of critical points (those points where the Jacobian matrix has rank < k) is
zero measure. A regular points h0, Sh0 is a locally smooth (co-dimension k) submanifold, and there is an open neighborhood of x0
in Rd so that the the surfaces Sh form a foliation.
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We remark that the discovery of Levi-Civita was that ∇̃ := Px∇ is defined uniquely by the submanifold
Sh itself and does not depend on the enveloping space Rn. Thus, if x0 is a critical point of the first integral
E : Rn → R on the leaf Sh0 , i.e. ∇̃Ẽ(x0) = 0, its gradient in Rn at x0 satisfies

∇E(x0) =

k∑
i=1

λi∇fi(x0) (8)

for appropriate scalars {λi}ki=1 given by (6) with g = E. The second differential restricted to Sh0 is

∇̃ ⊗ ∇̃Ẽ = (Px∇x ⊗Px∇xE)|Sh0
(9)

and, according to (5), coincides with the restriction of the differential of ∇E −
∑k

i=1 λi∇fi in Rn, e.g.

H̃essẼ = HessE
∣∣
TxSh0

−
k∑
i=1

λiHessfi
∣∣
TxSh0

−
k∑
i=1

∇λi ⊗∇fi
∣∣
TxSh0

= HessE
∣∣
TxSh0

+ IIx0(·, ·) · ∇E
∣∣
TxSh0

(10)

since ∇λi ⊗∇fi is orthogonal to TSh and where the second fundamental form of the surface

IIx(u, v) = P⊥
x [∇vu], for u, v ∈ TxSh (11)

Proof that x0 is a fixed point. Let X(t) denote the solution (1) with X(0) = x0. In view of (10) & (8),

0 =
d2

dt2
E(X(t))

∣∣∣
t=0

= HessE|X(t)(Ẋ(t), Ẋ(t))
∣∣∣
t=0

+ Ẍ(t) · ∇E(X(t))
∣∣∣
t=0

= b⊗ b : HessE|x0 + (∇bb) · ∇E|x0 = H̃essẼ(b, b)
∣∣
x0
.

Since, by assumption H̃essẼ(·, ·) is a non-degenerate quadratic form, we deduce that b(x0) = 0 as desired.

Proof that steady states form an k-dimensional manifold indexed by the leaves. Let {e1(x), ..., en−k(x)}
be a orthonormal basis of eigenvectors of H̃essẼ(·, ·), so that H̃essẼ(ek, eℓ) = λℓδkℓ. This basis exists be-
cause H̃essẼ(·, ·) is a symmetric matrix. Now define for ℓ = 1, ..., n − k, define the maps gℓ : Rn → R as
gℓ(x) = ∇E(x) · eℓ(x). Notice that at x0, gℓ(x0) = 0. We claim that in a neighbourhood of x0, the zero
set Z0 := {x, g1(x) = ... = gn−k(x) = 0} is a k-dimensional manifold, transverse to the leaf Sh passing
through x. The claim follows if we prove that that span{∇f1(x), ...,∇fk(x),∇g1(x), ...,∇gn−k(x)} = Rn.
Indeed this implies on the one hand that the ∇gℓ are non-zero and linearly indepedent at each point x ∈ Z0,
so by the implicit function theorem the zero set is a smooth k-dimensional manifold. Transversality follows
because the tangent spaces of both level sets span Rn. Steady states are conditional nondegenerate maxi-
mum/minimum (depending on the nature at x0) ofE since the eigenvalues of the Hessian vary continuously.

Proof that x0 is Lyapunov stable. Abstractly this follows simply from the fact that the intersections

{E = e} ∩ Sh, (12)

which confine the dynamics, are codimension k+1 topological spheres with the property that as e→ e∗ :=
E(x∗(h)), they contract to a point. The diameter of the intersection sets depends smoothly on |e− e∗|.

□

1. Variation Principle for Euler based on Vorticity

Here we are concerned with the variational principle defined with the energy

inf
ω∈Oω0

ˆ
M

|K[ω]|2dx, K[ω] := ∇⊥∆−1ω (13)
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where Oω0 is the orbit of ω0 in the area preserving diffeomorphism group Dµ(M):

Oω0 = {ψ :M → R : ω = ω0 ◦ φ, for some φ ∈ Dµ(M)}. (14)

The analogues of the conditions of Theorem 2 in infinite dimensions for Euler are
• ω0 is a vorticity function so that in some function spaceX , there is a neighborhood around ω0 inX

so that the topology of all vorticity functions in that neighborhood are the same as that of ω0. This
is ensured, for example, if all critical points of ω0 are Morse, or else if ω0 has no critical points.

• the leaves defined by “first integrals” are the orbits Oω for ω ∈ BX(ω0).
• the functional is the energy, stationary solutions are critical points on isovortical sheets Oω0

• non-degenerate maximum or minimum is ensured, according to Theorem 2, for critical points ω0

satisfying ω0 = F (ψ0) with F satisfying either

−λ1(M) < F ′ < 0 or F ′ > 0, (15)

where λ1(M) is the smallest positive eigenvalue of the Dirichlet Laplacian −∆ on M .
Under these hypotheses, the analogue of Theorem 1 was proved in [3]. We now discuss the point about

the non-degenerate quadratic form at greater length. We analyze this situation by identifying
´
M |K[ω]|2dx

for ω = ω0 ◦ φ for some φ ∈ Dµ(M) with

Eω0 [φ] :=
1

2

ˆ
M

|uφ(x)|2dx (16)

where
uφ(x) = ∇⊥ψφ(x), ψφ(x) := (∆−1ωφ)(x), ωφ(x) = ω0(φ(x)). (17)

Theorem 2. The first and second variation of Eω0 [φ] in the direction of η := ∇⊥h are

δEω0 [φ]η
∣∣∣
φ=id

= −
ˆ
M
{ω0, ψ0}hdx (18)

δ2Eω0 [φ](η, η)
∣∣∣
φ=id

=

ˆ
M

[
|∆−1/2{h, ω0}|2 + {h, ω0}{h, ψ0}

]
dx (19)

PROOF. The variation of along Oω0 is δωφ|φ=id = {h, ω0}. Note now that we may express the energy as

Eω0 [φ] =
1

2

ˆ
M

|uφ(x)|2dx = −1

2

ˆ
M
ψφωφdx,

so that the first variation is explicitly

δEω0 [φ]η
∣∣∣
φ=id

= −
ˆ
M
ψφδωφdx

∣∣∣
φ=id

=

ˆ
M
ψ0{ω0, h}dx = −

ˆ
M
h{ω0, ψ0}dx

where we used the following the Leibnitz formula (Lemma 1 with a = ω0, b = ψ0, c = h):

ψ0{ω0, h} = −{ω0, ψ0}h+ {ω0, ψ0h} (20)

and that {ω0, ψ0h} is integral zero. The second variation along Oω0 is δ2ωφ
∣∣∣
φ=id

= {h, {h, ω0}}. Thus

δ2Eω0 [φ](η, η)
∣∣∣
φ=id

= −
ˆ
M

[
ψφδ

2ωφ + δψφδωφ

]∣∣∣
φ=id

dx = −
ˆ
M
ψ0{h, {h, ω0}}dx+

ˆ
M

|∇δψφ|2
∣∣∣
φ=id

dx

=

ˆ
M
{ω0, h}{ψ0, h}dx+

ˆ
M

|∆−1/2{h, ω0}|2dx.

□

We used parts of the following elementary lemma about the Poisson bracket

Lemma 1. The bracket {a, b} = ∇⊥a · ∇b is a Poisson structure, e.g. it satisfies
• bilinear: {a+ c, b+ d} = {a, b}+ {a, d}+ {c, b}+ {c, d},
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• skew symmetric: {a, b} = −{b, a},
• Leibnitz: {a, bc} = {a, b}c+ b{a, c},
• Jacobi identity: {{a, b}, c}+ {{b, c}, a}+ {{c, a}, b} = 0.

Remark 1 (Special form for ω0 = F (ψ0)). If ω0 satisfying the condition of being an Euler steady state
{ω0, ψ0} = 0 has the additional property that there is a Lipschitz F : R → R so that ω = F (ψ), then

δ2Eω0 [φ](η, η)
∣∣∣
φ=id

=

ˆ
M

[
|∆−1/2{h, ω0}|2 +G′(ψ0)|{h, ω0}|2

]
dx (21)

where G(ω0) = ψ0, (e.g. G = F−1) and therefore G′(c) = 1
F ′(F−1(c))

. We have G′ > 0 ⇐⇒ F ′ > 0. If

G′ > 0 =⇒ then δ2Eω0 [φ](η, η) > 0,

namely, ω0 is an energy minimizer. On the other hand, since {h, ω0} is mean zero, by Poincareˆ
M

|∆−1/2{h, ω0}|2dx ≤ 1

λ1

ˆ
M

|{h, ω0}|2dx

so that

δ2Eω0 [φ](η, η)
∣∣∣
φ=id

≤
ˆ
M
(G′(ψ0) +

1

λ1
)|{h, ω0}|2dx.

This quadratic form is negative definite, so that ω0 are energy maximizers, provided

G′ + 1
λ1
< 0 ⇐⇒ −λ1 < F ′ < 0 =⇒ δ2Eω0 [φ](η, η) < 0.

2. Variation Principle for Euler based on Streamfunction

Here we are concerned with the variational principle

inf
ψ∈Oψ0

1

2

ˆ
M

|∇ψ|2dx (22)

where Oψ0 is the orbit of ψ0 in the area preserving diffeomorphism group Dµ(M):

Oψ0 = {ψ :M → R : ψ = ψ0 ◦ φ, for some φ ∈ Dµ(M)}. (23)

We analyze this situation by identifying 1
2

´
M |∇ψ|2dx for ψ = ψ0 ◦ φ for some φ ∈ Dµ(M) with

Eψ0 [φ] :=
1

2

ˆ
M

|uφ(x)|2dx (24)

where
uφ(x) = ∇⊥ψφ(x), ψφ(x) := ψ0(φ(x)), ωφ(x) := ∆ψφ(x). (25)

Theorem 3. The first and second variation of Eψ0 [φ] in the direction of η := ∇⊥h are

δEψ0 [φ]η
∣∣∣
φ=id

=

ˆ
M
{ω0, ψ0}hdx, (26)

δ2Eψ0 [φ](η, η)
∣∣∣
φ=id

=

ˆ
M

[
|∇{h, ψ0}|2 + {ω0, h}{ψ0, h}

]
dx. (27)

PROOF. The first variation along Oψ0 is δψφ|φ=id = {h, ψ0}. We compute

δEψ0 [φ]η
∣∣∣
φ=id

= −
ˆ
M
ωφδψφdx

∣∣∣
φ=id

=

ˆ
M
ω0{ψ0, h}dx =

ˆ
M
h{ω0, ψ0}dx.
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The second variation along Oψ0 is δ2ψφ
∣∣∣
φ=id

= {h, {h, ψ0}}. Thus

δ2Eψ0 [φ](η, η)
∣∣∣
φ=id

= −
ˆ
M

[
ωφδ

2ψφ + δψφδωφ

]∣∣∣
φ=id

dx = −
ˆ
M

[
ω0{h, {h, ψ0}}+ |∇δψφ|2

∣∣∣
φ=id

]
dx

=

ˆ
M
{ω0, h}{ψ0, h}dx+

ˆ
M

|∇{h, ψ0}|2dx.

□

Remark 2 (Special form for ω0 = F (ψ0)). If ω0 satisfying the condition of being an Euler steady state
{ω0, ψ0} = 0 has the additional property that there is a Lipshitz F : R → R so that ω = F (ψ), then

δ2Eψ0 [φ](η, η)
∣∣∣
φ=id

=

ˆ
M

[
|∇{h, ψ0}|2 + F ′(ψ0)|{ψ0, h}|2

]
dx. (28)

In this case, since {h, ψ0} is mean zero, by Poincare’s inequality we have

δ2Eψ0 [φ](η, η)
∣∣∣
φ=id

≥
ˆ
M
(F ′(ψ0) + λ1)|{ψ0, h}|2dx

Thus, if F ′(ψ0) > −λ1, we have that the form is positive and energy is a minimum.

Remark 3 (Relation between the actions). Note that

δ2Eω0 [φ](η, η)
∣∣∣
φ=id

=

ˆ
M

[
|∆−1/2{h, ω0}|2 + {h, ω0}{h, ψ0}

]
dx

= δ2Eψ0 [φ](η, η)
∣∣∣
φ=id

+

ˆ
M

[
|∆−1/2{h, ω0}|2 − |∇{h, ψ0}|2

]
dx (29)

Remark 4 (Dynamical Significance). The content of the variational principle (22) is the following. Consider
the Lagrangian dynamics of generated by the streamfunction ψ0 as the Hamiltonian:

d

dt
Φt = ∇⊥ψ0(Φt), Φ0 = id.

Being Hamiltonian, the flow Φt preserves the levels sets {ψ0 = c} of ψ0. Thus, the dynamics are determined
entirely from the period of revolution µ(c) of a particle confined to the level curves {ψ0 = c}. This period
can be expressed by the following formula

µ(c) =

˛
{ψ0=c}

dℓ

|∇ψ|
.

Indeed, if we parametrize Γc := {ψ0 = c} by Φ· : [0, µ(c)] → Γc, then
˛
{ψ0=c}

dℓ

|∇ψ|
=

ˆ µ(c)

0

|Φ̇t|
|∇ψ(Φt)|

dt =

ˆ µ(c)

0

|∇ψ(Φt)|
|∇ψ(Φt)|

dt = µ(c).

Supposing that the level sets {ψ0 = c} are topological circles that foliate a simply connected region with
{ψ0 = 0} being a single point, the area A(c) of the topological disk {ψ0 ≤ c} can be expressed via the
coarea formula as

A(c) =

ˆ
{ψ0≤c}

dx =

ˆ c

0

˛
{ψ0=c′}

dℓ

|∇ψ|
dc′ =

ˆ c

0
µ(c′)dc′.

As such µ(c) = A′(c). Consequently, the orbit Oψ0 consists of those Hamiltonians whose dynamics is con-
jugate to that of ψ0 since area enclosed by sublevel sets are invariant as are the values of the streamfunction,
so the hence the periods of revolution are also invariant. See [5, 4].
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