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ABSTRACT. We obtain a (nonlinear) stochastic representation for the solution of the continuity equation.

Let Ω = Td or Rd and suppose the density ϱ = ϱ(x, t) solves the continuity equation

∂tϱ+∇ · (ϱu) = 0 (1)

ϱ|t=0 = ϱ0 (2)

on Ω× [0, T ]. It is well known that upon introducing Lagrangian trajectories,

Ẋt(x) = u(Xt(x), t), X0(x) = x, (3)

the solution of (1), (2) admits the representation

ϱ(x, t) = ϱ0(At(x)) det(∇At(x)) (4)

where At := X−1
t is the back-to-labels map. Our goal here is to obtain an alternate representation formula

involving noisy paths. Specifically, we prove

Proposition 1. Let u ∈ C(0, T ;C2(Ω)) and ϱ be the unique strong solution of (1), (2) with ϱ0 > 0. Then,
ϱ admits the stochastic representation

ϱ(x, t) = E
[
ϱ0(Ãt(x)) det(∇Ãt(x))

]
, (5)

where Ãt := X̃−1
t is the back-to-labels map and X̃t is the stochastic flow associated to the Itô SDE

dX̃t(a) = u(X̃t(a), t)dt+

√
µ(t)

ϱ(X̃t(a), t)
dW̃t, X0(a) = a (6)

where W̃t is a d–dimensional Brownian motion and µ(t) is an arbitrary bounded positive function of time.

PROOF. To establish the representation (5), we first note that the forward Kolmogorov equation for the
transition density p(a, 0|x, t) of the process X̃t(a) is

∂tp+∇ · (pu) = µ

2
∆(ϱ−1p), (7)

p|t=0 = δ(x− a). (8)

See, e.g. [1, 2]. Now, suppose that the initial data (8) is randomly distributed and described by a probability
density function ϱ0, i.e. the initial data for the continuity equation (1), (2). Define

p(x, t) := E0[p(ã, 0|x, t)] :=
ˆ
Ω
ϱ0(a)p(a, 0|x, t)da. (9)
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which represents the evolved probability density starting from the distribution ϱ0. Averaging Eqs. (7), (8)
and using linearity, we have

∂tp+∇ · (pu) = µ

2
∆(ϱ−1p), (10)

p|t=0 = ϱ0. (11)

This is also called the Fokker-Planck equation. Clearly p(x, t) ≡ ϱ(x, t) is a solution of (10), (11). Since
u is assumed smooth and there are no vacuum states ϱ0 > 0, it follows by uniqueness for both the systems
(1), (2) and (10), (11) that this is only solution. Recall that, by definition, the transition probability (solution
of the forward Kolmogorov equation) has representation

p(a, 0|x, t) = E[δ(X̃t(a)− x)]. (12)

Thus, we obtain the following representation for the solution of the continuity equation (1), (2) in terms of
the solution of the (averaged) forward Kolmogorov equation (10), (11)

ϱ(x, t) = E0[p(ã, 0|x, t)] =
ˆ
Ω
ϱ0(a)E[δ(X̃t(a)− x)]da

= E
ˆ
Ω

ϱ0(a)

det(∇Xt(a))

∣∣∣∣∣
a=At(a′)

δ(a′ − x)da′ = E

 ϱ0(a)

det(∇X̃t(a))

∣∣∣∣∣
a=Ãt(x)

 .
Finally, note that since Xt(At(x)) = x, we have that ∇Xt(At(x))∇At(x) = I and consequently

det(∇At(x)) = [det(∇Xt(At(x)))]
−1. (13)

The result (5) follows. □

Remark 1. We remark that the formula (5) is highly nonlinear in the sense of McKean – (5) together with
(6) constitute a fixed-point problem which could, in principle, be solved to obtain ϱ. This is, of course, much
more difficult than is necessary, since (4) already provides a representation of the solution ρ.

Remark 2. An analogous argument can be employed to show

ϱ0(x) = E

 ϱ(a, t)

det(∇Ãt(a))

∣∣∣∣∣
a=X̃t(x)

 = E
[
ϱ(X̃t(x), t) det(∇X̃t(x))

]
. (14)

To understand the determinant appearing above, we recall the following elementary Lemma

Lemma 1. Fix smooth ut : [0, T ]× Ω 7→ Rd and σt : [0, T ]× Ω 7→ Rd×d. Let x 7→ Xs,t(x) be the regular
stochastic flow of diffeomorphisms [3] associated to the Itô SDE

dXt(x) = ut(Xt(x))dt+ σt(Xt(x)) · dWt X0(x) = x. (15)

Then the following formula for the Jacobian holds

det(∇Xt(x)) = exp

ˆ t

0

(
∇ · ut −

1

2
∂iσjk∂jσik

) ∣∣∣∣∣
Xs(x)

ds+

ˆ t

0
∇ · σt

∣∣
Xs(x)

· dWs

 . (16)

We omit the proof, which is a straightforward computation. Note that even if the velocity is divergence-
free, the stochastic flow still exhibits volume changes due to the non-constant multiplicative coefficients. In
(5), σt :=

√
µ(s)/ϱ(x, t)I. Thus, ∇ · σt = −

√
µ
2

∇ϱ
ϱ3/2

and ∂iσjk∂jσik = µ
2
|∇ρ|2
ϱ3

.

Remark 3. In the case where u is incompressible, Eq. (5) provides a representation for an ideal advected
scalar. In particular, if θ solves

∂tθ + u · ∇θ = 0 (17)

θ|t=0 = θ0, (18)
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with θ0 > 0, there is a representation formula

θ(x, t) = E
[
θ0(Ãt(x)) det(∇Ãt(x))

]
, (19)

with

det(∇Ãt(x)) = exp

−

ˆ t

0

µ(s)

4

|∇θ|2

θ3

∣∣∣∣∣
Xt,s(x)

ds+

ˆ t

0

√
µ(s)

2
dWs ·

∇θ
θ3/2

∣∣∣∣∣
Xt,s(x)

 (20)

where Xt,s = X−1
s,t is the inverse of the forward flow.

1. “Energy dissipation” in Pressureless Compressible Navier-Stokes

We can use our new stochastic representation to explain energy dissipation in a sticky-particle model
via a convexity argument. For µ > 0. The particular sticky-particle model we consider is

∂t(ρu) +∇ · (ρu⊗ u) = µ∆u (21)

∂tρ+∇ · (ρu) = 0 (22)

which is the pressureless Navier-Stokes equation with constant dynamic viscosity. Strong solutions satisfy

∂tu+ u · ∇u = µρ−1∆u, (23)

∂tρ+∇ · (ρu) = 0. (24)

It follows that u has the stochastic representation (using the trajectories (6))

u(x, t) = E
[
u0(Ãt(x))

]
,

Now consider for any convex function ψ, the convex entropy ψ(u). By Jensen’s inequality,

ψ (u(x, t)) ≤ E
[
ψ
(
u0(Ãt(x))

)]
.

Using the above inequality together with the representation (14), we haveˆ
Rn

dx ψ (u(x, t)) ρ(x, t) ≤
ˆ
Rn

dx E
[
ψ
(
u0(Ãt(x))

)]
ρ(x, t)

=

ˆ
Rn

da ψ (u0(a))E

 ρ(x, t)

det(∇Ãt(x))

∣∣∣∣∣
x=X̃t(a)

 =

ˆ
Rn

da ψ (u0(a)) ρ0(a).

This is the statement that density-weighted convex entropies are dissipated by the dynamics of (23). An
easy calculus proof of this which goes as follows. Any function ψ := ψ(u) evolves according to

∂tψ(u) + u · ∇ψ(u) = µρ−1ψ′(u)∆u. (25)

Using the continuity equation, we have

∂t(ρψ(u)) +∇ ·
(
ρψ(u)− µψ′(u)∇u

)
= −µψ′′(u)|∇u|2. (26)

The result follows upon integration.
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