Local pressure formulae for incompressible fluids equations

Theodore D. Drivas

ABSTRACT. In this note, we derive (a slight generalization of) a “local” formula for the pressure in incompressible
hydrodynamics due to P. Constantin [1]. The identity, in particular, tells that C* velocities have C2* pressure fields.

We are concerned with the pressure field p of incompressible fluid motion. Specifically, fix M C R? (possibly
with boundary) and consider the system

du+u-Vu=-Vp+ f in M, (D
V.ou=0 in M. )

If f = 0, this is the incompressible Euler equations. Here, we consider f to be solenoidal V - f = 0 and nothing
else. In particular, it may represent a body force of be solution dependent, e.g. f = vAwu making the above system
the incompressible Navier-Stokes equation. The role of the pressure function p : M x R — R is to maintain the
divergence-free constraint (2) under evolution. In particular, it satisfies the following elliptic equation

—Ap =Vu': Vu. 3)

with appropriate Neumann conditions (if M has boundary) which arise from tracing equation (1) along the bound-
ary. The following formula [1, Lemma 2] is due to Constantin:

Proposition 1. Fixv € R3. Let x € M and 0 < r < dist(x, M ). Suppose u € C?(M) and p solves (3). Then

Py 1dS(y) = — lulr 1) — of?

TS / uly, ) — v)Pds(y)
/ /5 (uly, 1) = ) = u(y,t) — o) dS(y) &)

where n(y) = (y — x)/|ly — x| and |y — x| = r.
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We gather some preliminaries before proceeding to the proof. We work on the whole space for simplicity. In
order to invert the Laplacian in 3 on the whole space, we require the Newton potential

— L In |y d=2
N(y)=4 7T _ (5)
{dw—bad‘y’z T d>2

where ag = %2 /T'(d/2 + 1) gives the volume of the unit d-ball. Assuming f € C? and define

p(r) = 9 f(z —y)N(y)dy, (6)

Then ¢ is the solution to
—Ap(z) = f(x) ©)
for all z € RY. If further || — 0 as |z| — oo then the above representation formula yields the unique solution to
the Poisson equation. Inserting f := 0;0;g;; € CY, and integrating by parts, we find
5. .
P(o) = =g (0) + po. | Koyl = v)dy ®

where

Yiy; — *|y‘2

Oéd|y’d+2
1

Kij(y) = , Yy eR?\ {0} 9)



Note that choosing g;; = u,u; yields the standard non-local representation formula for the fluid pressure ¢ = p.
In fact, since V - u = 0, for any constant vector v the pressure—Poisson equation can be written as

*Ap == 818]((@&2 - Ui)(u]' - Uj)). (10)
Thus, a generalized non-local formula for the pressure reads
1
p(z) = —Zlulz,t) = v]* + pv, /Rd Kij(y) (uwi(y, t) — vi)(u;(y, t) — v;)dy (an

Constantin’s local pressure formula, which we shall prove below, reads

1 1
)~ g7 [ bl 05) = —glate. ) —of
g s ) 1) ) )Pty

tpo [ Kyl -yl - o)) - vdy (2)
(@)

where v € RY is arbitrary and 7i(y) = (y — x)/|y — x| and |y — | = 7. This formula localizes (11) at the expense
of added in a spherical pressure average and additional term and generalizes Constantin’s formulae for arbitrary
dimension (note g = 47/3). Formula (12) in his paper makes the choice v = 0 whereas (14) chooses v = u(x, t).

PROOF. Let g;; = (u; —v;)(uj —v;) and recall —Ap = 0;0;¢;;. We recall Green’s formula: Let O C R4 be some
region and let ¢» € C?(O), then

U(z) = / (=Ay)(y)N(z —y)dy + / [N(z = y)0nt(y) — P(y)OnN (z — y)]dS(y) (13)
o) 80
where we used that —AN (y) = d(y). Choosing ¢ = p, the above formula becomes

p(z) = / 80195 (W) N (z — y)dy + / N (2 — )0p(y) — p(4)3N(z — 1)|dS(y)
O 00

= / 9i9ij(y)9; N(z — y)dy + / 7;0,9i5(y)N (z — y)dS(y) + / [N(z = y)0np(y) + p(y)On N(z — y)]dS(y)
O 00 00

= [ asoro; N~y
+ /ao [7:9ij(y)0f N(z —y) + p(y) 05 N (x — y)dy + (Onp(y) + 1;0:9:5(y)) N (z — y)]dS(y).

We specify O = B,.(z) so that N (z — y)‘yesr(x) = N(r). Since Opp(y) + 1;0igi;(y) = 1;0;(pdsj + wiu;) =
—n - Oyu, we have

/S ( )(8np(y) +1;0;9i(y))N(z — y)dS(y) = —N(r)/B ( )Vy - Oyu(y)dy = 0. (14)
Now note
BN (z — )‘ 1l 27y - L aw),  aN@-y) =— (15)
’ Y yE€Sy(z) dad |CIZ — y|d yESr(x) |ST’ ) " y ‘Sr’
so that
1
| p0)aNG = is) = o [ p)as) (16)
S, (x) 1Sr] J s, ()
and
) " 1 ) ) 1 .
/ 1i9i5(y)0F N (z —y)dy = 1i(y)9i5(y)n; (y)dy = 7 (y)- (u(y, t) —v)[*dS(y). A7)
S, () 1Sr| J s, (z) 1Sr] Js, ()
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And finally, using the formula (8), we have

1
/B ( )gz-j(y)afafN(x —y)dy = —g\U(x,t) —v]*+po. /Rd Kij(x —y)(ui(y, t) —vi)(uj(y, t) —v;)dy. (18)

Thus, combining the above expressions we obtain the formula (12). U
Remark 1. To obtain representation formulae on the torus T = (—x, 7]%, we must periodize,
KV (y) = > Kij(y—2nk),  VyeT\{0}. (19)
kezd

Then (8), (12) hold as a representation formulae on the torus replacing R? with T¢ and K;;(y) with K ().
Now we prove another interesting identity which allows for an alternate local formula

Proposition 2. Fixv € R3. Let x € M and 0 < r < dist(x, M ). Suppose u € C*(M) and p solves (3). Then
1 1 11

— Py, )dy — p(y, 1)dS(y) = — =~ u(y,t) — v’dy
1Br| JB, () (v%) 1Sr] J s, () (8, £)d5(9) d |By| Br(z)’ (w:£) =l
1 .
e A(y) - (u(y.t) —v)*dS(y).  (20)
|1Sr] S s, ()
PRrROOF. To see this, note that
/ ooty /B 0;(pbi; + (i — vi) (g — v5))dy

/ ’Lj p5’b] + (uz - vi)(uj - Uj))dy

o)
3
&

+ / 03 )y — 2)i(p8i + (i — v5) (g — v;))dy
Sr(x)
/ (dp + [uy) — v[?)dy

By (z
+r / (o) + [nW) - (uly) - ) P)dy 1)
Sr(x)

where we used that n(y) = (y — z)/r. On the other hand, for any divergence free vector field 1), we have

/B iy = /B el = /0 0 ( /S » m<y>w<y>ds<y>> "
N /0 g </Bp(1‘) v My)dy) ap =10

where we employed the spherical coarea formula. Since V - 9;u = 0, this result applies and we obtain the desired

formula (20) by recalling that |S,| = d|B,|/r and dividing the equation (21) through by d|B,|. O
Remark 2. Combining (20) with (12), we obtain a different ‘local’ pressure formula only involving ball-averages:
(e.0) ~ = )y = (Jute.t) — o — = [ July.t) —vPd
b\, t) — 70— py,t)ay = —— { julx,t) — v — uly,t) —vpay
|BT| By () d |BT‘ Br(x)
+po. [ Kol =)~ w0 vy 02
By (x
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