Local pressure formulae for incompressible fluids equations

Theodore D. Drivas

Abstract. In this note, we derive (a slight generalization of) a "local" formula for the pressure in incompressible hydrodynamics due to P. Constantin [1]. The identity, in particular, tells that C^{α} velocities have $C^{2 \alpha}$ pressure fields.

We are concerned with the pressure field p of incompressible fluid motion. Specifically, fix $M \subset \mathbb{R}^{d}$ (possibly with boundary) and consider the system

$$
\begin{align*}
\partial_{t} u+u \cdot \nabla u & =-\nabla p+f & & \text { in } M, \tag{1}\\
\nabla \cdot u & =0 & & \text { in } M . \tag{2}
\end{align*}
$$

If $f=0$, this is the incompressible Euler equations. Here, we consider f to be solenoidal $\nabla \cdot f=0$ and nothing else. In particular, it may represent a body force of be solution dependent, e.g. $f=\nu \Delta u$ making the above system the incompressible Navier-Stokes equation. The role of the pressure function $p: M \times \mathbb{R} \rightarrow \mathbb{R}$ is to maintain the divergence-free constraint (2) under evolution. In particular, it satisfies the following elliptic equation

$$
\begin{equation*}
-\Delta p=\nabla u^{t}: \nabla u \tag{3}
\end{equation*}
$$

with appropriate Neumann conditions (if M has boundary) which arise from tracing equation (1) along the boundary. The following formula [1, Lemma 2] is due to Constantin:

Proposition 1. Fix $v \in \mathbb{R}^{3}$. Let $x \in M$ and $0<r<\operatorname{dist}(x, \partial M)$. Suppose $u \in C^{2}(M)$ and p solves (3). Then

$$
\begin{align*}
p(x, t)-\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)} p(y, t) d S(y)= & -\frac{1}{d}|u(x, t)-v|^{2} \\
& +\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)}|\hat{n}(y) \cdot(u(y, t)-v)|^{2} d S(y) \\
& +\int_{0}^{r} \frac{d \rho}{\rho^{d-2}} \int_{S_{\rho}(x)}\left(d|\hat{n}(y) \cdot(u(y, t)-v)|^{2}-|u(y, t)-v|^{2}\right) d S(y) \tag{4}
\end{align*}
$$

where $\hat{n}(y)=(y-x) /|y-x|$ and $|y-x|=r$.
We gather some preliminaries before proceeding to the proof. We work on the whole space for simplicity. In order to invert the Laplacian in 3 on the whole space, we require the Newton potential

$$
N(y)= \begin{cases}-\frac{1}{2 \pi} \ln |y| & d=2 \tag{5}\\ \frac{1}{d(d-2) \alpha_{d}}|y|^{2-d} & d>2\end{cases}
$$

where $\alpha_{d}=\pi^{d / 2} / \Gamma(d / 2+1)$ gives the volume of the unit d-ball. Assuming $f \in C^{2}$ and define

$$
\begin{equation*}
\varphi(x)=\int_{\mathbb{R}^{d}} f(x-y) N(y) d y \tag{6}
\end{equation*}
$$

Then φ is the solution to

$$
\begin{equation*}
-\Delta \varphi(x)=f(x) \tag{7}
\end{equation*}
$$

for all $x \in \mathbb{R}^{d}$. If further $|\varphi| \rightarrow 0$ as $|x| \rightarrow \infty$ then the above representation formula yields the unique solution to the Poisson equation. Inserting $f:=\partial_{i} \partial_{j} g_{i j} \in C^{0}$, and integrating by parts, we find

$$
\begin{equation*}
\varphi(x)=-\frac{\delta_{i j}}{d} g_{i j}(x)+p \cdot v \cdot \int_{\mathbb{R}^{d}} K_{i j}(y) g_{i j}(x-y) d y \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{i j}(y)=\frac{y_{i} y_{j}-\frac{\delta_{i j}}{d}|y|^{2}}{\alpha_{d}|y|^{d+2}}, \quad \forall y \in \mathbb{R}^{d} \backslash\{0\} \tag{9}
\end{equation*}
$$

Note that choosing $g_{i j}=u_{i} u_{j}$ yields the standard non-local representation formula for the fluid pressure $\varphi=p$. In fact, since $\nabla \cdot u=0$, for any constant vector v the pressure-Poisson equation can be written as

$$
\begin{equation*}
-\Delta p=\partial_{i} \partial_{j}\left(\left(u_{i}-v_{i}\right)\left(u_{j}-v_{j}\right)\right) \tag{10}
\end{equation*}
$$

Thus, a generalized non-local formula for the pressure reads

$$
\begin{equation*}
p(x)=-\frac{1}{d}|u(x, t)-v|^{2}+p \cdot v \cdot \int_{\mathbb{R}^{d}} K_{i j}(y)\left(u_{i}(y, t)-v_{i}\right)\left(u_{j}(y, t)-v_{j}\right) d y \tag{11}
\end{equation*}
$$

Constantin's local pressure formula, which we shall prove below, reads

$$
\begin{align*}
p(x, t)-\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)} p(y, t) d S(y)= & -\frac{1}{d}|u(x, t)-v|^{2} \\
& +\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)}|\hat{n}(y) \cdot(u(y, t)-v)|^{2} d S(y) \\
& +p \cdot v \cdot \int_{B_{r}(x)} K_{i j}(x-y)\left(u_{i}(y, t)-v_{i}\right)\left(u_{j}(y, t)-v_{j}\right) d y \tag{12}
\end{align*}
$$

where $v \in \mathbb{R}^{d}$ is arbitrary and $\hat{n}(y)=(y-x) /|y-x|$ and $|y-x|=r$. This formula localizes (11) at the expense of added in a spherical pressure average and additional term and generalizes Constantin's formulae for arbitrary dimension (note $\alpha_{3}=4 \pi / 3$). Formula (12) in his paper makes the choice $v=0$ whereas (14) chooses $v=u(x, t)$.

Proof. Let $g_{i j}=\left(u_{i}-v_{i}\right)\left(u_{j}-v_{j}\right)$ and recall $-\Delta p=\partial_{i} \partial_{j} g_{i j}$. We recall Green's formula: Let $O \subset \mathbb{R}^{d}$ be some region and let $\psi \in C^{2}(O)$, then

$$
\begin{equation*}
\psi(x)=\int_{O}(-\Delta \psi)(y) N(x-y) d y+\int_{\partial O}\left[N(x-y) \partial_{n} \psi(y)-\psi(y) \partial_{n} N(x-y)\right] d S(y) \tag{13}
\end{equation*}
$$

where we used that $-\Delta N(y)=\delta(y)$. Choosing $\psi=p$, the above formula becomes

$$
\begin{aligned}
p(x)= & \int_{O} \partial_{i} \partial_{j} g_{i j}(y) N(x-y) d y+\int_{\partial O}\left[N(x-y) \partial_{n} p(y)-p(y) \partial_{n} N(x-y)\right] d S(y) \\
= & \int_{O} \partial_{i} g_{i j}(y) \partial_{j}^{x} N(x-y) d y+\int_{\partial O} \hat{n}_{j} \partial_{i} g_{i j}(y) N(x-y) d S(y)+\int_{\partial O}\left[N(x-y) \partial_{n} p(y)+p(y) \partial_{n}^{x} N(x-y)\right] d S(y) \\
= & \int_{O} g_{i j}(y) \partial_{i}^{x} \partial_{j}^{x} N(x-y) d y \\
& \quad+\int_{\partial O}\left[\hat{n}_{i} g_{i j}(y) \partial_{j}^{x} N(x-y)+p(y) \partial_{n}^{x} N(x-y) d y+\left(\partial_{n} p(y)+\hat{n}_{j} \partial_{i} g_{i j}(y)\right) N(x-y)\right] d S(y) .
\end{aligned}
$$

We specify $O=B_{r}(x)$ so that $\left.N(x-y)\right|_{y \in S_{r}(x)}=N(r)$. Since $\partial_{n} p(y)+\hat{n}_{j} \partial_{i} g_{i j}(y)=\hat{n}_{j} \partial_{i}\left(p \delta_{i j}+u_{i} u_{j}\right)=$ $-\hat{n} \cdot \partial_{t} u$, we have

$$
\begin{equation*}
\int_{S_{r}(x)}\left(\partial_{n} p(y)+\hat{n}_{j} \partial_{i} g_{i j}(y)\right) N(x-y) d S(y)=-N(r) \int_{B_{r}(x)} \nabla_{y} \cdot \partial_{t} u(y) d y=0 \tag{14}
\end{equation*}
$$

Now note

$$
\begin{equation*}
\left.\partial_{i} N(x-y)\right|_{y \in S_{r}(x)}=-\left.\frac{1}{d \alpha_{d}} \frac{x-y}{|x-y|^{d}}\right|_{y \in S_{r}(x)}=\frac{1}{\left|S_{r}\right|} \hat{n}(y), \quad \partial_{n} N(x-y)=\frac{1}{\left|S_{r}\right|} \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{S_{r}(x)} p(y) \partial_{n}^{x} N(x-y) d S(y)=\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)} p(y) d S(y) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S_{r}(x)} \hat{n}_{i} g_{i j}(y) \partial_{j}^{x} N(x-y) d y=\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)} \hat{n}_{i}(y) g_{i j}(y) \hat{n}_{j}(y) d y=\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)}|\hat{n}(y) \cdot(u(y, t)-v)|^{2} d S(y) . \tag{17}
\end{equation*}
$$

And finally, using the formula (8), we have

$$
\begin{equation*}
\int_{B_{r}(x)} g_{i j}(y) \partial_{i}^{x} \partial_{j}^{x} N(x-y) d y=-\frac{1}{d}|u(x, t)-v|^{2}+p \cdot v \cdot \int_{\mathbb{R}^{d}} K_{i j}(x-y)\left(u_{i}(y, t)-v_{i}\right)\left(u_{j}(y, t)-v_{j}\right) d y \tag{18}
\end{equation*}
$$

Thus, combining the above expressions we obtain the formula (12).
Remark 1. To obtain representation formulae on the torus $\mathbb{T}^{d}=(-\pi, \pi]^{d}$, we must periodize,

$$
\begin{equation*}
K_{i j}^{p e r}(y):=\sum_{k \in \mathbb{Z}^{d}} K_{i j}(y-2 \pi k), \quad \forall y \in \mathbb{T}^{d} \backslash\{0\} \tag{19}
\end{equation*}
$$

Then (8), (12) hold as a representation formulae on the torus replacing \mathbb{R}^{d} with \mathbb{T}^{d} and $K_{i j}(y)$ with $K_{i j}^{\text {per }}(y)$.
Now we prove another interesting identity which allows for an alternate local formula
Proposition 2. Fix $v \in \mathbb{R}^{3}$. Let $x \in M$ and $0<r<\operatorname{dist}(x, \partial M)$. Suppose $u \in C^{2}(M)$ and p solves (3). Then

$$
\begin{align*}
\frac{1}{\left|B_{r}\right|} \int_{B_{r}(x)} p(y, t) d y-\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)} p(y, t) d S(y)= & -\frac{1}{d} \frac{1}{\left|B_{r}\right|} \int_{B_{r}(x)}|u(y, t)-v|^{2} d y \\
& +\frac{1}{\left|S_{r}\right|} \int_{S_{r}(x)}|\hat{n}(y) \cdot(u(y, t)-v)|^{2} d S(y) \tag{20}
\end{align*}
$$

Proof. To see this, note that

$$
\begin{align*}
\int_{B_{r}(x)}(y-x)_{i} \partial_{t} u_{i}(y) d y= & -\int_{B_{r}(x)}(y-x)_{i} \partial_{j}\left(p \delta_{i j}+\left(u_{i}-v_{i}\right)\left(u_{j}-v_{j}\right)\right) d y \\
= & -\int_{B_{r}(x)} \delta_{i j}\left(p \delta_{i j}+\left(u_{i}-v_{i}\right)\left(u_{j}-v_{j}\right)\right) d y \\
& +\int_{S_{r}(x)} n_{j}(y)(y-x)_{i}\left(p \delta_{i j}+\left(u_{i}-v_{i}\right)\left(u_{j}-v_{j}\right)\right) d y \\
=- & \int_{B_{r}(x)}\left(d p+|u(y)-v|^{2}\right) d y \\
& +r \int_{S_{r}(x)}\left(p(y)+|n(y) \cdot(u(y)-v)|^{2}\right) d y \tag{21}
\end{align*}
$$

where we used that $n(y)=(y-x) / r$. On the other hand, for any divergence free vector field ψ, we have

$$
\begin{aligned}
\int_{B_{r}(x)}(y-x)_{i} \psi(y) d y & =\int_{B_{r}(x)}|x-y| \hat{n}_{i}(y) \psi(y) d y=\int_{0}^{r} \rho\left(\int_{S_{\rho}(x)} \hat{n}_{i}(y) \psi(y) d S(y)\right) d \rho \\
& =\int_{0}^{r} \rho\left(\int_{B_{\rho}(x)} \nabla \cdot \psi(y) d y\right) d \rho=0 .
\end{aligned}
$$

where we employed the spherical coarea formula. Since $\nabla \cdot \partial_{t} u=0$, this result applies and we obtain the desired formula (20) by recalling that $\left|S_{r}\right|=d\left|B_{r}\right| / r$ and dividing the equation (21) through by $d\left|B_{r}\right|$.
Remark 2. Combining (20) with (12), we obtain a different 'local' pressure formula only involving ball-averages:

$$
\begin{align*}
p(x, t)-\frac{1}{\left|B_{r}\right|} \int_{B_{r}(x)} p(y, t) d y= & -\frac{1}{d}\left(|u(x, t)-v|^{2}-\frac{1}{\left|B_{r}\right|} \int_{B_{r}(x)}|u(y, t)-v|^{2} d y\right) \\
& +p . v \cdot \int_{B_{r}(x)} K_{i j}(x-y)\left(u_{i}(y, t)-v_{i}\right)\left(u_{j}(y, t)-v_{j}\right) d y \tag{22}
\end{align*}
$$

References

[1] Constantin, Peter. Local formulae for the hydrodynamic pressure and applications. Russian Mathematical Surveys 69.3 (2014): 395.

