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ABSTRACT. In this note, we derive (a slight generalization of) a “local” formula for the pressure in incompressible
hydrodynamics due to P. Constantin [1]. The identity, in particular, tells that Cα velocities have C2α pressure fields.

We are concerned with the pressure field p of incompressible fluid motion. Specifically, fix M ⊂ Rd (possibly
with boundary) and consider the system

∂tu+ u · ∇u = −∇p+ f in M, (1)
∇ · u = 0 in M. (2)

If f = 0, this is the incompressible Euler equations. Here, we consider f to be solenoidal ∇ · f = 0 and nothing
else. In particular, it may represent a body force of be solution dependent, e.g. f = ν∆u making the above system
the incompressible Navier-Stokes equation. The role of the pressure function p : M × R → R is to maintain the
divergence-free constraint (2) under evolution. In particular, it satisfies the following elliptic equation

−∆p = ∇ut : ∇u. (3)

with appropriate Neumann conditions (if M has boundary) which arise from tracing equation (1) along the bound-
ary. The following formula [1, Lemma 2] is due to Constantin:

Proposition 1. Fix v ∈ R3. Let x ∈M and 0 < r < dist(x, ∂M). Suppose u ∈ C2(M) and p solves (3). Then

p(x, t)− 1

|Sr|

ˆ
Sr(x)

p(y, t)dS(y) = −1

d
|u(x, t)− v|2

+
1

|Sr|

ˆ
Sr(x)

|n̂(y) · (u(y, t)− v)|2dS(y)

+

ˆ r

0

dρ

ρd−2

ˆ
Sρ(x)

(
d|n̂(y) · (u(y, t)− v)|2 − |u(y, t)− v|2

)
dS(y) (4)

where n̂(y) = (y − x)/|y − x| and |y − x| = r.

We gather some preliminaries before proceeding to the proof. We work on the whole space for simplicity. In
order to invert the Laplacian in 3 on the whole space, we require the Newton potential

N(y) =

{
− 1

2π ln |y| d = 2
1

d(d−2)αd
|y|2−d d > 2

(5)

where αd = πd/2/Γ(d/2 + 1) gives the volume of the unit d-ball. Assuming f ∈ C2 and define

φ(x) =

ˆ
Rd

f(x− y)N(y)dy, (6)

Then φ is the solution to
−∆φ(x) = f(x) (7)

for all x ∈ Rd. If further |φ| → 0 as |x| → ∞ then the above representation formula yields the unique solution to
the Poisson equation. Inserting f := ∂i∂jgij ∈ C0, and integrating by parts, we find

φ(x) = −δij
d
gij(x) + p.v.

ˆ
Rd

Kij(y)gij(x− y)dy (8)

where

Kij(y) =
yiyj − δij

d |y|2

αd|y|d+2
, ∀y ∈ Rd \ {0} (9)
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Note that choosing gij = uiuj yields the standard non-local representation formula for the fluid pressure φ = p.
In fact, since ∇ · u = 0, for any constant vector v the pressure–Poisson equation can be written as

−∆p = ∂i∂j((ui − vi)(uj − vj)). (10)

Thus, a generalized non-local formula for the pressure reads

p(x) = −1

d
|u(x, t)− v|2 + p.v.

ˆ
Rd

Kij(y)(ui(y, t)− vi)(uj(y, t)− vj)dy (11)

Constantin’s local pressure formula, which we shall prove below, reads

p(x, t)− 1

|Sr|

ˆ
Sr(x)

p(y, t)dS(y) = −1

d
|u(x, t)− v|2

+
1

|Sr|

ˆ
Sr(x)

|n̂(y) · (u(y, t)− v)|2dS(y)

+ p.v.

ˆ
Br(x)

Kij(x− y)(ui(y, t)− vi)(uj(y, t)− vj)dy (12)

where v ∈ Rd is arbitrary and n̂(y) = (y− x)/|y− x| and |y− x| = r. This formula localizes (11) at the expense
of added in a spherical pressure average and additional term and generalizes Constantin’s formulae for arbitrary
dimension (note α3 = 4π/3). Formula (12) in his paper makes the choice v = 0 whereas (14) chooses v = u(x, t).

PROOF. Let gij = (ui−vi)(uj −vj) and recall −∆p = ∂i∂jgij . We recall Green’s formula: Let O ⊂ Rd be some
region and let ψ ∈ C2(O), then

ψ(x) =

ˆ
O
(−∆ψ)(y)N(x− y)dy +

ˆ
∂O

[N(x− y)∂nψ(y)− ψ(y)∂nN(x− y)]dS(y) (13)

where we used that −∆N(y) = δ(y). Choosing ψ = p, the above formula becomes

p(x) =

ˆ
O
∂i∂jgij(y)N(x− y)dy +

ˆ
∂O

[N(x− y)∂np(y)− p(y)∂nN(x− y)]dS(y)

=

ˆ
O
∂igij(y)∂

x
jN(x− y)dy +

ˆ
∂O
n̂j∂igij(y)N(x− y)dS(y) +

ˆ
∂O

[N(x− y)∂np(y) + p(y)∂xnN(x− y)]dS(y)

=

ˆ
O
gij(y)∂

x
i ∂

x
jN(x− y)dy

+

ˆ
∂O

[n̂igij(y)∂
x
jN(x− y) + p(y)∂xnN(x− y)dy + (∂np(y) + n̂j∂igij(y))N(x− y)]dS(y).

We specify O = Br(x) so that N(x − y)
∣∣
y∈Sr(x)

= N(r). Since ∂np(y) + n̂j∂igij(y) = n̂j∂i(pδij + uiuj) =

−n̂ · ∂tu, we haveˆ
Sr(x)

(∂np(y) + n̂j∂igij(y))N(x− y)dS(y) = −N(r)

ˆ
Br(x)

∇y · ∂tu(y)dy = 0. (14)

Now note

∂iN(x− y)
∣∣∣
y∈Sr(x)

= − 1

dαd

x− y

|x− y|d
∣∣∣
y∈Sr(x)

=
1

|Sr|
n̂(y), ∂nN(x− y) =

1

|Sr|
(15)

so that ˆ
Sr(x)

p(y)∂xnN(x− y)dS(y) =
1

|Sr|

ˆ
Sr(x)

p(y)dS(y) (16)

andˆ
Sr(x)

n̂igij(y)∂
x
jN(x−y)dy =

1

|Sr|

ˆ
Sr(x)

n̂i(y)gij(y)n̂j(y)dy =
1

|Sr|

ˆ
Sr(x)

|n̂(y) ·(u(y, t)−v)|2dS(y). (17)
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And finally, using the formula (8), we haveˆ
Br(x)

gij(y)∂
x
i ∂

x
jN(x− y)dy = −1

d
|u(x, t)− v|2 + p.v.

ˆ
Rd

Kij(x− y)(ui(y, t)− vi)(uj(y, t)− vj)dy. (18)

Thus, combining the above expressions we obtain the formula (12). □

Remark 1. To obtain representation formulae on the torus Td = (−π, π]d, we must periodize,

Kper
ij (y) :=

∑
k∈Zd

Kij(y − 2πk), ∀y ∈ Td \ {0}. (19)

Then (8), (12) hold as a representation formulae on the torus replacing Rd with Td and Kij(y) with Kper
ij (y).

Now we prove another interesting identity which allows for an alternate local formula

Proposition 2. Fix v ∈ R3. Let x ∈M and 0 < r < dist(x, ∂M). Suppose u ∈ C2(M) and p solves (3). Then
1

|Br|

ˆ
Br(x)

p(y, t)dy − 1

|Sr|

ˆ
Sr(x)

p(y, t)dS(y) = −1

d

1

|Br|

ˆ
Br(x)

|u(y, t)− v|2dy

+
1

|Sr|

ˆ
Sr(x)

|n̂(y) · (u(y, t)− v)|2dS(y). (20)

PROOF. To see this, note thatˆ
Br(x)

(y − x)i∂tui(y)dy = −
ˆ
Br(x)

(y − x)i∂j(pδij + (ui − vi)(uj − vj))dy

= −
ˆ
Br(x)

δij(pδij + (ui − vi)(uj − vj))dy

+

ˆ
Sr(x)

nj(y)(y − x)i(pδij + (ui − vi)(uj − vj))dy

= −
ˆ
Br(x)

(dp+ |u(y)− v|2)dy

+ r

ˆ
Sr(x)

(p(y) + |n(y) · (u(y)− v)|2)dy (21)

where we used that n(y) = (y − x)/r. On the other hand, for any divergence free vector field ψ, we have
ˆ
Br(x)

(y − x)iψ(y)dy =

ˆ
Br(x)

|x− y|n̂i(y)ψ(y)dy =

ˆ r

0
ρ

(ˆ
Sρ(x)

n̂i(y)ψ(y)dS(y)

)
dρ

=

ˆ r

0
ρ

(ˆ
Bρ(x)

∇ · ψ(y)dy

)
dρ = 0.

where we employed the spherical coarea formula. Since ∇ · ∂tu = 0, this result applies and we obtain the desired
formula (20) by recalling that |Sr| = d|Br|/r and dividing the equation (21) through by d|Br|. □

Remark 2. Combining (20) with (12), we obtain a different ‘local’ pressure formula only involving ball-averages:

p(x, t)− 1

|Br|

ˆ
Br(x)

p(y, t)dy = −1

d

(
|u(x, t)− v|2 − 1

|Br|

ˆ
Br(x)

|u(y, t)− v|2dy

)

+ p.v.

ˆ
Br(x)

Kij(x− y)(ui(y, t)− vi)(uj(y, t)− vj)dy. (22)

References
[1] Constantin, Peter. Local formulae for the hydrodynamic pressure and applications. Russian Mathematical Surveys 69.3 (2014): 395.

DEPARTMENT OF MATHEMATICS, STONY BROOK UNIVERSITY, STONY BROOK, NY, 11794
Email address: tdrivas@math.stonybrook.edu

3


	References

