
Geodesics on group of measure preserving
diffeomorphisms do not self-intersect

Theodore D. Drivas and Francisco Torres de Lizaur

ABSTRACT. V.I. Arnold viewed ideal incompressible fluid motion as geodesic on its configuration space of
volume preserving diffeomorphisms with respect to the L2 metric [1, 2]. When the underlying manifold M
is the flat 2-torus or a simply connected planar domain with smooth boundary, Ebin [3] showed that these
geodesics cannot have any transverse self-intersections: if a flow revisits its state from a prior time, then the
flow is time periodic. In this note, we show that the result of Ebin [3] applies in far greater generality to
essentially any setting. We prove it explicitly for for surfaces of any genus, or planar domains with any number
of boundary components. The result is also true in higher dimensions, which can be seen as an application of
the Hodge theorem.

LetM ⊂ R2 be a bounded planar domain with smooth boundary ∂M (possibly with multiple connected
components) and exterior unit normal n̂. The incompressible Euler equations governing the motion of a fluid
which is ideal and confined to M read

∂tu+ u · ∇u = −∇p, in M, (1)
∇ · u = 0, in M, (2)

u|t=0 = u0, in M, (3)
u · n̂ = 0, on ∂M. (4)

The pressure above is determined by the incompressibility condition via

−∆p = ∇⊗∇ : (u⊗ u), (5)

with trivial projection onto harmonics (the fluid is at equilibrium without external driving forces). To un-
derstand the resulting dynamics, a useful quantity to introduce is the vorticity, a two-form related to the
antisymmetric part of the velocity gradient tensor. This object is Lie transported in any dimension. Here we
will work in two dimensions in which the vorticity can be identified with a scalar field ω := ∇⊥ · u with
∇⊥ := (−∂2, ∂1). The the vorticity evolves according to

∂tω + u · ∇ω = 0 in M, (6)

ω|t=0 = ω0, in M. (7)

In fact, (6)–(7) can be closed entirely in terms of the vorticity. This is a well-known fact if the domain is
simply connected (has trivial homology), or if the homology is time invariant (the flat 2-torus). For more
discussion on the evolution of the harmonic part of the velocity, see [4]. With this, Ebin proved

Theorem 1 (Ebin [3]). Let M be flat 2-torus or a simply connected planar domain with smooth boundary.
Then Dµ(M) has no self-intersecting geodesics. That is, if Φ(t) is a geodesic, then either Φ : (t1, t2) →
Dµ(M) is injective or Φ(t) is periodic.

However, in fact, the result holds in full generality no matter the topology. We have

Theorem 2. Let M ⊂ R2 is a bounded smooth domain. Then Dµ(M) has no self-intersecting geodesics.
That is, if Φ(t) is a geodesic, then either Φ : (t1, t2) → Dµ(M) is injective or Φ(t) is periodic.

This is an immediate corollary of the following lemma

Lemma 1. Let M ⊂ R2 is a bounded smooth domain. The connected components of M are denoted
Γ0,Γ1, . . .ΓN with Γ0 bordering the unbounded connected component of R2 \M . Given a smooth function
ω :M → R and constants γi, there exists a unique smooth u satisfying

∇⊥ · u = ω, ∇ · u = 0, u · n̂|∂M = 0

˛
Γi

u · dℓ = γi, for i = 1, 2, . . . , N. (8)
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Remark 1. In view of Kelvin’s circulation theorem, the circulation on the connected components of the
boundaries are invariant in time ˛

Γi

u(t) · dℓ =
˛
Γi

u0 · dℓ. (9)

As such, recovering u from (8) is determined completely by the vorticity and the initial data of the velocity.

PROOF OF THEOREM 2. If for some times t1 < t2, we have equal vorticities ω(t1) = ω(t2), the according
to Theorem 2, we have also equal velocities u(t1) = u(t2). As the flowmaps are equal at the intersection
Φ(t1) = Φ(t2) and so are their tangents Φ̇(t1) = Φ̇(t2), the flowmap Φ(t) must be time periodic with period
T = t2 − t1. □

Remark 2. The system (8) is equivalent to the following “modified Biot-Savart law”: Given a smooth
vorticity function ω on a bounded domain M , a streamfunction ψ is determined as the solution of

∆ψ = ω in M, (10)

ψ
∣∣
Γ0

= 0, (11)

∂τψ
∣∣
Γi

= 0 for i = 1, 2, . . . , N, (12)˛
Γi

∂nψ dℓ = γi for i = 1, 2, . . . , N, (13)

where ∂n the outward normal derivative to the domain and ∂τ is a tangential derivative. The velocity field is
represented as u = ∇⊥ψ. Provided ω is sufficiently regular, there exists a unique smooth solution ψ on Ω̄.
The velocity field is then completely determined by u = ∇⊥ψ. We remark that the outer circulation (along
Γ0) is not specified as it is determined from the others by the divergence theorem.

Next, we prove the same result for surfaces

Theorem 3. Let M be a genus g closed surface with area form µ. Then Dµ(M) has no self-intersecting
geodesics. That is, if Φ(t) is a geodesic, then either Φ : (t1, t2) → Dµ(M) is injective or Φ(t) is periodic.

This follows immediately from a similar lemma

Lemma 2. LetM be a genus g closed surface with area form µ. DenoteN = 2g independent homologically
non-trivial loops by Γ1, . . . ,ΓN . Given a smooth function ω : M → R and constants γi, there exists a
unique smooth divergence-free vector field u satisfying

∇⊥ · u = ω, ∇ · u = 0,

˛
Γi

u · dℓ = γi, for i = 1, 2, . . . , N. (14)

PROOF. By Hodge decomposition theorem, any smooth vector field v in the closed surface can be uniquely
written as

v = ∇f +∇⊥ψ + vH

with f, ψ functions and the surface and vH an harmonic vector field (∇ · vH = 0, ∇⊥ · vH = 0). For what
follows, it is useful to recall as well that an harmonic vector field is completely determined by its circulations
along a basis of homologically non-trivial loops.

Now let ψ be the unique function satisfying ψ = ∆−1ω, and let vH be the unique harmonic vector field
satisfying ˆ

Γi

vH · dℓ = −
ˆ
Γi

∇⊥ψ · dℓ+ γi

Then the vector field u = ∇⊥ψ+vH satisfies (14), and by Hodge decomposition, it is the unique divergence
free vector field that does so. □
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Remark 3. The argument above translates, mutatis mutandis, to higher dimensional manifolds. The only
difference is that the role of the vorticity function ω is now played by an exact 2-form, and one should apply
Hodge decomposition to the 1-form dual to the velocity field u. More precisely, since ω is exact, let α be
any primitive 1-form, dα = ω. Then by Hodge decomposition

α = δβ + αclosed = δβ + df + αH

with αH harmonic, f a function, and β a 2-form. We see first that δβ (but not β) is uniquely determined by
ω, since any two primitives α and α′ must differ by a closed 1-form, and any closed 1-form is the sum of an
exact 1-form and an harmonic one.

Now if we want the primitive α (or strictly speaking, its dual vector field) to be divergence free, we must
have df = 0; so the only freedom left in the primitive is in the choice of the harmonic part αH . And this is
the part that is fixed by the circulations: choosing the unique αH such thatˆ

Γi

αi = −
ˆ
Γi

δβ + γi.

So there is a unique divergence-free 1-form with the required circulations. We set u as the dual vector field.

1. Proof of Lemma 2

Existence. We shall construct the velocity field as follows

u = v +∇⊥ψ0 +∇ϕ (14)

where

• ψ0 is built to match the vorticity and have trivial harmonic projection. It is the unique solution of

∆ψ0 = ω in M,

ψ0 = 0 on ∂M

• v is harmonic and fixes the circulations, defined by

v(x) :=

N∑
i=1

(
γi −

˛
Γi

∂nψ0dℓ
)
K(x− xi) (14)

where xi is any points outside M encircled by the component Γi, and where K(z) := − 1
2π

z⊥

|z|2 .
Note that, provided x ̸= y, K is divergence and curl free in the variable x, so v is harmonic in M .
Indeed, if C is any closed curve encircling a point y exactly once, since K(z) = − 1

2π∇
⊥ log |z|,ˆ

C
K(·, y) · dℓ = − 1

2π

ˆ
C
∇⊥ log |x(C(s))− y| · n̂ ds =

ˆ
C

1

2π
∇ log |x(C(s))− y| · n̂ ds

=

ˆ
C̄

1

2π
∆x log |x− y|dx = 1

where C̄ is the interior of C and we used ∇⊥ ·K = ∆ log |z| = δ(z).
• ϕ is harmonic and fixes the non-tangent boundary velocity. It is the unique solution of

∆ϕ = 0 in M,

∂nϕ = −n̂ · (v +∇⊥ψ0) on ∂M

Note that the velocity defined in this way satisfies all the conditions in (8).
To show uniqueness, we argue that the system (8) is equivalent to the system (10)–(13).

• One direction is trivial, if u = ∇⊥ψ where ψ satisfies (10)–(13), then u satisfies (8).
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• For the other direction, we must show the existence of a stream function. Fix any p ∈ ∂M . For
any x ∈M , let Cp,x be a simple curve connecting p to x. Let

ψC(x) = −
ˆ
Cp,x

u⊥ · dℓ (14)

We claim this formula does not depend on the connecting curve Cp,x. Indeed, let C̃p,x be another
connecting curve homotopic to Cp,x. Let D be the (oriented) region between Cp,x and C̃p,x.

ψC(x) = −
ˆ
Cp,x

u⊥ · dℓ =
ˆ
Cp,x

u · n̂ds =
ˆ
C̃p,x

u · n̂ds+
ˆ
D
∇ · u dx

=

ˆ
C̃p,x

u · n̂ds = ψC̃(x)

Now suppose that C̃p,x is another connecting curve that wraps multiple times along the boundary.
Then, repeating the above calculation will result in additional boundary integral terms of the typeˆ

Γi

u⊥ · dℓ = −
ˆ
Γi

u · n̂ ds = 0 (13)

As such, the formula (1) being well defined (independent of the connecting curve), means that
u = ∇⊥ψ. But then conditions (11),(12) are satisfied by the fact that u is tangent to the boundary
and conditions (10) and (13) are also immediately checked.

Uniqueness. Finally we show uniqueness. Suppose their were multiple streamfunctions satisfying (10)–
(13). By linearity, their difference, call it ψ̃, satisfies

∆ψ̃ = 0 in M,

ψ̃
∣∣
Γ0

= 0,

∂τ ψ̃
∣∣
Γi

= 0 for i = 1, 2, . . . , N,˛
Γi

∂nψ̃ dℓ = 0 for i = 1, 2, . . . , N.

Note that ψ̃ can apriori take different (constant) values, ci, on different connected components of the bound-
aries. We aim to show that ψ̃ = 0. Suppose for contradiction that ψ̃ ̸= 0 and, without loss of generality, that
ψ > 0 inside the domain. By maximum principle, ψ̃ achieves its maximum and minimum on the boundary
∂M . Suppose its maximum is attained on some Γi. Then, by the Hopf boundary–point lemma, ∂nψ̃|Γi ≥ 0

But this contradicts the normal derivative being mean zero on each component of the boundary. Thus ψ̃ = 0.

References
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