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Let Ω be a smooth bounded domain and let u be a strong solution of the incompressible Navier-Stokes
equation with no-slip boundary conditions

∂tu+£T
uu = −∇q + ν∆u, (1)

∇ · u = 0, (2)

u|∂Ω = 0, (3)

u|t=0 = u0, (4)

where q is related to the usual pressure by q := p+ 1
2 |u|

2 and where the Lie derivative of a 1-form is

£T
u f = u · ∇f + (∇u)t · f. (5)

Suppose now that h solves the following linear backward PDE

∂th+£uh = −ν∆h, (6)
∇ · h = 0, (7)

h|∂Ω = 0, (8)

h|t=T = hT , (9)

where the Lie derivative of a vector field is

£uf = u · ∇f − f · ∇u. (10)

The following is a generalized Kelvin theorem, which holds in the presence of boundaries and viscosity.

PROPOSITION 1. Let u be a strong solution of (1)–(4) and h be any solution of (6)–(9). Thenˆ
Ω
u(t) · h(t) dx =

ˆ
Ω
u(t′) · h(t′) dx, t, t′ ∈ [0, T ]. (11)

PROOF. We proceed by direct computation starting with
d

dt

ˆ
Ω
u · h =

ˆ
Ω
(∂tu · h+ u · ∂th)

= −
ˆ
Ω
(£T

uu · h+ u ·£uh)− ν

ˆ
Ω
u ·∆h+ ν

ˆ
Ω
∆u · h, (12)

where we used the fact that h is divergence-free and h|∂Ω = 0 to eliminate the contribution from the
pressure. Now, using the facts that u is divergence-free and u|∂Ω = 0, we have for any regular f, g thatˆ

Ω
£T

u f · g :=

ˆ
Ω
(u · ∇f +∇u · f) · g = −

ˆ
Ω
(u · ∇g − g · ∇u) · f := −

ˆ
Ω
£ug · f.

Moreover, since u|∂Ω = 0 and h|∂Ω = 0, we have

−ν

ˆ
Ω
u ·∆h+ ν

ˆ
Ω
∆u · h = ν

ˆ
Ω
∇u : ∇h− ν

ˆ
Ω
∇u : ∇h = 0.

□
1
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REMARK 1 (Relation to Kelvin’s theorem for loops). Proposition 1 tells that there is an infinite dimen-
sional family of non-local invariants for the Euler and Navier-Stokes equations. A special, singular, case
within this family correspond to taking h to be “singular loops”. Specifically, we can solve (6)–(9) with
distributional final data, interpreting h has a solution in the weak sense. Treating u as a test function in the
weak form of (6), the L2 pairing of h with u is time invariant on [0, T ]. In the case of Euler ν = 0, then

h(x, t) =

˛
XT,t(C)

δd(x− y)dy =

ˆ 1

0
δd(x−XT,t(C(s)))

d

ds
XT,t(C(s))ds (13)

is distributionally divergence free and is a weak solution of (6) with ν = 0 and final-time data

h(x, T ) =

˛
C
δd(x− y)dy. (14)

Whence, the usual Kelvin theorem [1] is recovered from Proposition 1˛
C
u(T ) · dℓ =

˛
XT,t(C)

u(t) · dℓ, t ∈ [0, T ]. (15)

In the case of Navier-Stokes on the torus, we note that

h(x, t) = E

[˛
X̃T,t(C)

δd(x− y)dy

]
(16)

is once again distributionally divergence free and a weak solution of the backward equation (6) (smooth for
any t > 0). Then, the Constantin-Iyer Kelvin theorem [2] is recovered from Proposition 1

˛
C
u(T ) · dℓ = E

[˛
X̃T,t(C)

u(t) · dℓ

]
, t ∈ [0, T ]. (17)
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