Generalized Kelvin theorem for incompressible fluids
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Let Q2 be a smooth bounded domain and let u be a strong solution of the incompressible Navier-Stokes
equation with no-slip boundary conditions

oyu + £5u = —Vq + vAu, (1)
V.u=0, )
ulaq = 0, 3)
uli=o = uo, 4

where ¢ is related to the usual pressure by ¢ := p + %\u\Q and where the Lie derivative of a 1-form is

Ll f=u-Vf+ (V) f. 5)
Suppose now that h solves the following linear backward PDE
Oh + £,h = —vAR, (6)
V-h=0, @)
hloa =0, 8)
hli=r = hr, ©)

where the Lie derivative of a vector field is
Euf=u-Vf—f-Vu. (10)
The following is a generalized Kelvin theorem, which holds in the presence of boundaries and viscosity.
PROPOSITION 1. Let u be a strong solution of (I)~@) and h be any solution of (6)—(©). Then

/u(t)-h(t) d:c:/u(t’)-h(t’) dz, ¢ € [0,T]. (11
Q Q

PROOF. We proceed by direct computation starting with

d
:—/(.ffu-h—i—u-.fuh)—u/u-Ah—l—y/Au-h, (12)
Q Q Q
where we used the fact that h is divergence-free and h|so = O to eliminate the contribution from the

pressure. Now, using the facts that u is divergence-free and u|gn = 0, we have for any regular f, g that

/foﬂg::/Q(U-VerVu-f)-g:—/Q(U‘Vg—g-VUWf:Z—/qug'f-

Moreover, since u|sg = 0 and h|gn = 0, we have

—1//u-Ah+y/Au-h:V/Vu:Vh—V/Vu:Vh:O.
Q 0 0 Q 0
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REMARK 1 (Relation to Kelvin’s theorem for loops). Proposition [I]tells that there is an infinite dimen-
sional family of non-local invariants for the Euler and Navier-Stokes equations. A special, singular, case
within this family correspond to taking i to be “singular loops™. Specifically, we can solve (6)—(9) with
distributional final data, interpreting h has a solution in the weak sense. Treating « as a test function in the
weak form of (6]), the L? pairing of h with u is time invariant on [0, 7). In the case of Euler v = 0, then

1
d
Wz, 1) = }£ 5z — y)dy = / 5z — Xpa(C(5))) - Xra(C(s)ds (13)
X1,:(C) 0 s
is distributionally divergence free and is a weak solution of (6) with » = 0 and final-time data
h(z,T) = 55 8 (x - y)dy. (14)
C
Whence, the usual Kelvin theorem [1]] is recovered from Proposition
7§ u(T)-dl = §I§ u(t) - de, t€[0,T]. (15)
C X71,:(C)
In the case of Navier-Stokes on the torus, we note that
h(z,t) =E ¢~ (5d(x —y)dy (16)
X7,:(C)

is once again distributionally divergence free and a weak solution of the backward equation (6) (smooth for
any t > 0). Then, the Constantin-Iyer Kelvin theorem [2] is recovered from Proposition

;ﬁ u(t) -dﬁ] . telo,T) (17)

X7,4(C)

yﬁcu(T).dezE
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