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ABSTRACT. We demonstrate that finite fluxes of infinitely many nonlinear ideal conserved quantities, analogous to
the Kolmogorov 4

5
–law for the energy in incompressible turbulence, regularize vanishing viscosity solutions of one-

dimensional conservation laws and impose strong constraints on spatial intermittency.

Consider the viscous Burgers equation [1] on x ∈ T, t ≥ 0

∂tu
ν + uν∂xu

ν = ν∂2
xu

ν + f, (1)

u|t=0 = u0.

The most basic estimates for the solution uν are derived from energy balance

ν

ˆ T

0

ˆ
T
|∂xuν(x, t)|2dxdt = 1

2∥u0∥
2
L2 − 1

2∥u
ν(·, T )∥2L2 +

ˆ T

0

ˆ
T
uν(x, t)fdxdt, (2)

which confers L2(0, T ;H1(T)) regularity to the solution, but not uniformly in the viscosity. The strongest uniform
estimate at first sight is L∞(0, T ;L∞(T)), following from the maximum principle

sup
t∈[0,T ]

∥uν(t)∥L∞(T) ≤ ∥u0∥L∞(T) + T∥f∥L∞(T). (3)

Our main result is a uniform fractional regularity of uν related to the pth–order structure functions

Sν
p (ℓ, T ) :=

1

T

ˆ T

0

ˆ
T
|uν(x+ ℓ, t)− uν(x, t)|pdxdt.

In turbulent flows, both incompressible and compressible, these objects develop scaling ranges

Sν
p (ℓ, T ) ∼ |ℓ|ζp for ℓν ≪ ℓ ≪ 2π

while, mathematically, the aim is to establish uniform upper bounds Sν
p (ℓ, T ) ≤ Cp|ℓ|ζp for all |ℓ| > 0.

Theorem 1. For each T > 0 and p ≥ 3 and data u0 ∈ L∞(T), f ∈ L∞(T), there is a constant Cp :=
Cp(∥u0∥L∞ , ∥f∥L∞ , T ) so that ζp ≥ 1 for all p ≥ 3, that is for all |ℓ| > 0 and T > 0, we have

Sν
p (ℓ, T ) ≤ Cp|ℓ|. (4)

If f is time-periodic, then Cp is independent of T . If f = 0, for cp := cp(∥u0∥L∞) we have uniform decay

Sν
p (ℓ, T ) ≤ cp

|ℓ|
T
. (5)

Condition (4) is equivalent to −́T
0 ∥uν(t)∥p

Ḃ
1/p
p,∞(T)

dt ≤ Cp, where ∥f∥Ḃs
p,∞(T) := sup|ℓ|<1 |ℓ|−s∥f(· + ℓ) −

f∥Lp(T) is the Besov semi-norm. As such, we have a self-regularization result for viscous solutions – from bounded

data, they immediately enter into the space X =
⋂

p≥3 L
∞(0, T ;B

1/p
p,∞(T)) uniformly in the viscosity. Entropic

shocks solutions saturate this regularity in that they live in X and no better space within the Besov scale.

FIGURE 1. Burgers solution with ν > 0, f = 0, first for small viscosity and subsequently for long times.
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The above result itself is well known [5, 4, 8]; in fact there is a stronger uniform estimate for the bounded
variation L∞(0, T ; (L∞ ∩ BV )(T)) ⊂ L∞(0, T ;B

1/p
p,∞(T)) for all p ≥ 1. Our primary interest is in giving a

short, intrinsically physical space, argument based on the following principle: nonlinear ideal conserved quantities
that may be anomalously dissipated limit the degree to which the solution may suffer irregularities. A bound of
this type was established by Goldman, Josien and Otto [3] using a modified energy flux. For Burgers, there are
infinitely many such quantities (any convex function of the solution), suggesting there should be infinitely many
such bounds (4), which we here show. These estimates show that pth-order absolute structure functions obey a
uniform bound with ζp = 1 for p ≥ 3. This fact underlies the rigidity of the so-called multifractal spectrum of
anomalous exponents in Burgulence. For Navier-Stokes, the only known inviscid invariant which is dissipated is
the kinetic energy. Its flux, related to the dissipation by the Kolmogorov 4

5–law [6], is not coercive unlike the
present setting. With an additional alignment hypothesis, the law does confer limited regularity [2]. Whether this
is a generic feature of turbulence is open.

We remark that much of the analysis here could carry over to general one-dimensional conservation laws, even
those with non-degenerate, nonlinear viscosity, taking the form

∂tu
ε + ∂xh(u

ε) = ε∂x(ν(u
ε)∂xu

ε),

provided, at least, that the Hamiltonian function h(u) is sufficiently close to quadratic. For simplicity, we choose
to focus here on the viscous Burgers equation. We require the identity (similar to that appearing in [7])

Lemma 1. Let φ : R → R have Lipschitz first derivative. Let Φ be the primitive of φ and Φ̃ of xφ′(x). Then

∂tφ(δℓu) + ∂xJℓ[u] + ∂ℓΠ[δℓu] = −νφ′′(δℓu)|∂xδℓu|2 + φ′(δℓu)δℓf (6)

where we defined Jℓ[u] := u′φ(δℓu)− Φ̃(δℓu)− ν∂xφ(δℓu),

Π[δℓu] := Φ̃(δℓu)− Φ(δℓu).

PROOF OF LEMMA 1. To see this, let u′ = u(·+ ℓ), u = u(·) and δℓu = u′ − u. Then

∂tδℓu+ u′∂xδℓu+ δℓu∂ℓδℓu− δℓu∂xδℓu = ν∆δℓu+ δℓf,

since u′∂xu′ − u∂xu = δℓu∂xu
′ + u∂xδℓu = δℓu∂ℓδℓu+ u∂xδℓu = δℓu∂ℓδℓu+ u′∂xδℓu− δℓu∂xδℓu. Multiplying

the above by φ′(δℓu), we obtain the evolution, which is equivalent to (6)

∂tφ(δℓu) + ∂x(u
′φ(δℓu))− φ′(δℓu)δℓu∂xδℓu+

(
φ′(δℓu)δℓu− φ(δℓu)

)
∂ℓδℓu = νφ′(δℓu)∆δℓu+ φ′(δℓu)δℓf.

□

PROOF OF THEOREM 1. For p ≥ 3 and α ∈ R, let φ(x) = αx|x|p−2. We compute φ′(x) = α(p − 1)|x|p−2 and
φ′′(x) = α(p − 1)(p − 2)x|x|p−4 ∈ L∞. The primitive of φ is Φ = α

p |x|
p and for xφ′(x) = (p − 1)φ(x), it is

Φ̃ = (p− 1)Φ. Thus Π[x] = (p− 2)Φ(x) = αp−2
p |x|p. Letting α = p

p−2 , we obtain the balance

1

ℓ
−
ˆ T

0

ˆ
T
|δℓu|pdxdt =

1

T
−
ˆ ℓ

0

ˆ
T
φ(δℓu0)dx− 1

T
−
ˆ ℓ

0

ˆ
T
φ(δℓuT )dx+−

ˆ ℓ

0
−
ˆ T

0

ˆ
T
φ′(δℓ′u)δℓ′fdxdtdℓ

′

− ν −
ˆ ℓ

0
−
ˆ T

0

ˆ
T
φ′′(δℓ′u)|∂xδℓ′u|2dxdtdℓ′.

Using energy balance (2) and the maximum principle (3) to bound each term on the right-hand-side, we obtain a
uniform-in-viscosity bound. This yields the claimed estimates. If f is time-periodic, the uniform-in-time estimate
follows from [5] which established ∥u(t)∥L∞ ≤ C0 for a t independent constant C0, improving the bound (3).
When f = 0, by (2) we have the decaying estimate∣∣∣∣ν −

ˆ ℓ

0
−
ˆ T

0

ˆ
T
φ′′(δℓ′u)|∂xδℓ′u|2dxdtdℓ′

∣∣∣∣ ≤ 2

T
∥φ′′∥L∞(0,∥u0∥L∞ )∥u0∥2L2 ,

which gives (5). This completes the proof. □
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